Metamath Proof Explorer


Theorem om1opn

Description: The topology of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses om1bas.o 𝑂 = ( 𝐽 Ω1 𝑌 )
om1bas.j ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
om1bas.y ( 𝜑𝑌𝑋 )
om1opn.k 𝐾 = ( TopOpen ‘ 𝑂 )
om1opn.b ( 𝜑𝐵 = ( Base ‘ 𝑂 ) )
Assertion om1opn ( 𝜑𝐾 = ( ( 𝐽ko II ) ↾t 𝐵 ) )

Proof

Step Hyp Ref Expression
1 om1bas.o 𝑂 = ( 𝐽 Ω1 𝑌 )
2 om1bas.j ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
3 om1bas.y ( 𝜑𝑌𝑋 )
4 om1opn.k 𝐾 = ( TopOpen ‘ 𝑂 )
5 om1opn.b ( 𝜑𝐵 = ( Base ‘ 𝑂 ) )
6 eqid ( Base ‘ 𝑂 ) = ( Base ‘ 𝑂 )
7 eqid ( TopSet ‘ 𝑂 ) = ( TopSet ‘ 𝑂 )
8 6 7 topnval ( ( TopSet ‘ 𝑂 ) ↾t ( Base ‘ 𝑂 ) ) = ( TopOpen ‘ 𝑂 )
9 4 8 eqtr4i 𝐾 = ( ( TopSet ‘ 𝑂 ) ↾t ( Base ‘ 𝑂 ) )
10 1 2 3 om1tset ( 𝜑 → ( 𝐽ko II ) = ( TopSet ‘ 𝑂 ) )
11 10 5 oveq12d ( 𝜑 → ( ( 𝐽ko II ) ↾t 𝐵 ) = ( ( TopSet ‘ 𝑂 ) ↾t ( Base ‘ 𝑂 ) ) )
12 9 11 eqtr4id ( 𝜑𝐾 = ( ( 𝐽ko II ) ↾t 𝐵 ) )