Step |
Hyp |
Ref |
Expression |
1 |
|
om1bas.o |
⊢ 𝑂 = ( 𝐽 Ω1 𝑌 ) |
2 |
|
om1bas.j |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
3 |
|
om1bas.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑋 ) |
4 |
|
om1opn.k |
⊢ 𝐾 = ( TopOpen ‘ 𝑂 ) |
5 |
|
om1opn.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑂 ) ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝑂 ) = ( Base ‘ 𝑂 ) |
7 |
|
eqid |
⊢ ( TopSet ‘ 𝑂 ) = ( TopSet ‘ 𝑂 ) |
8 |
6 7
|
topnval |
⊢ ( ( TopSet ‘ 𝑂 ) ↾t ( Base ‘ 𝑂 ) ) = ( TopOpen ‘ 𝑂 ) |
9 |
4 8
|
eqtr4i |
⊢ 𝐾 = ( ( TopSet ‘ 𝑂 ) ↾t ( Base ‘ 𝑂 ) ) |
10 |
1 2 3
|
om1tset |
⊢ ( 𝜑 → ( 𝐽 ↑ko II ) = ( TopSet ‘ 𝑂 ) ) |
11 |
10 5
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐽 ↑ko II ) ↾t 𝐵 ) = ( ( TopSet ‘ 𝑂 ) ↾t ( Base ‘ 𝑂 ) ) ) |
12 |
9 11
|
eqtr4id |
⊢ ( 𝜑 → 𝐾 = ( ( 𝐽 ↑ko II ) ↾t 𝐵 ) ) |