Step |
Hyp |
Ref |
Expression |
1 |
|
elpi1.g |
⊢ 𝐺 = ( 𝐽 π1 𝑌 ) |
2 |
|
elpi1.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
3 |
|
elpi1.1 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
4 |
|
elpi1.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑋 ) |
5 |
|
pi1addf.p |
⊢ + = ( +g ‘ 𝐺 ) |
6 |
|
pi1addval.3 |
⊢ ( 𝜑 → 𝑀 ∈ ∪ 𝐵 ) |
7 |
|
pi1addval.4 |
⊢ ( 𝜑 → 𝑁 ∈ ∪ 𝐵 ) |
8 |
|
eqidd |
⊢ ( 𝜑 → ( ( 𝐽 Ω1 𝑌 ) /s ( ≃ph ‘ 𝐽 ) ) = ( ( 𝐽 Ω1 𝑌 ) /s ( ≃ph ‘ 𝐽 ) ) ) |
9 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) = ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ) |
10 |
|
fvexd |
⊢ ( 𝜑 → ( ≃ph ‘ 𝐽 ) ∈ V ) |
11 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐽 Ω1 𝑌 ) ∈ V ) |
12 |
|
eqid |
⊢ ( 𝐽 Ω1 𝑌 ) = ( 𝐽 Ω1 𝑌 ) |
13 |
2
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) |
14 |
1 3 4 12 13 9
|
pi1blem |
⊢ ( 𝜑 → ( ( ( ≃ph ‘ 𝐽 ) “ ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ) ⊆ ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ∧ ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ⊆ ( II Cn 𝐽 ) ) ) |
15 |
14
|
simpld |
⊢ ( 𝜑 → ( ( ≃ph ‘ 𝐽 ) “ ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ) ⊆ ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ) |
16 |
8 9 10 11 15
|
qusin |
⊢ ( 𝜑 → ( ( 𝐽 Ω1 𝑌 ) /s ( ≃ph ‘ 𝐽 ) ) = ( ( 𝐽 Ω1 𝑌 ) /s ( ( ≃ph ‘ 𝐽 ) ∩ ( ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) × ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ) ) ) ) |
17 |
1 3 4 12
|
pi1val |
⊢ ( 𝜑 → 𝐺 = ( ( 𝐽 Ω1 𝑌 ) /s ( ≃ph ‘ 𝐽 ) ) ) |
18 |
1 3 4 12 13 9
|
pi1buni |
⊢ ( 𝜑 → ∪ 𝐵 = ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ) |
19 |
18
|
sqxpeqd |
⊢ ( 𝜑 → ( ∪ 𝐵 × ∪ 𝐵 ) = ( ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) × ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ) ) |
20 |
19
|
ineq2d |
⊢ ( 𝜑 → ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) = ( ( ≃ph ‘ 𝐽 ) ∩ ( ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) × ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ) ) ) |
21 |
20
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐽 Ω1 𝑌 ) /s ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ) = ( ( 𝐽 Ω1 𝑌 ) /s ( ( ≃ph ‘ 𝐽 ) ∩ ( ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) × ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ) ) ) ) |
22 |
16 17 21
|
3eqtr4d |
⊢ ( 𝜑 → 𝐺 = ( ( 𝐽 Ω1 𝑌 ) /s ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ) ) |
23 |
|
phtpcer |
⊢ ( ≃ph ‘ 𝐽 ) Er ( II Cn 𝐽 ) |
24 |
23
|
a1i |
⊢ ( 𝜑 → ( ≃ph ‘ 𝐽 ) Er ( II Cn 𝐽 ) ) |
25 |
14
|
simprd |
⊢ ( 𝜑 → ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ⊆ ( II Cn 𝐽 ) ) |
26 |
18 25
|
eqsstrd |
⊢ ( 𝜑 → ∪ 𝐵 ⊆ ( II Cn 𝐽 ) ) |
27 |
24 26
|
erinxp |
⊢ ( 𝜑 → ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) Er ∪ 𝐵 ) |
28 |
|
eqid |
⊢ ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) = ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) |
29 |
|
eqid |
⊢ ( +g ‘ ( 𝐽 Ω1 𝑌 ) ) = ( +g ‘ ( 𝐽 Ω1 𝑌 ) ) |
30 |
1 3 4 13 28 12 29
|
pi1cpbl |
⊢ ( 𝜑 → ( ( 𝑎 ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) 𝑐 ∧ 𝑏 ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) 𝑑 ) → ( 𝑎 ( +g ‘ ( 𝐽 Ω1 𝑌 ) ) 𝑏 ) ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ( 𝑐 ( +g ‘ ( 𝐽 Ω1 𝑌 ) ) 𝑑 ) ) ) |
31 |
12 3 4
|
om1plusg |
⊢ ( 𝜑 → ( *𝑝 ‘ 𝐽 ) = ( +g ‘ ( 𝐽 Ω1 𝑌 ) ) ) |
32 |
31
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵 ) ) → ( 𝑐 ( *𝑝 ‘ 𝐽 ) 𝑑 ) = ( 𝑐 ( +g ‘ ( 𝐽 Ω1 𝑌 ) ) 𝑑 ) ) |
33 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
34 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵 ) ) → 𝑌 ∈ 𝑋 ) |
35 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵 ) ) → ∪ 𝐵 = ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ) |
36 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵 ) ) → 𝑐 ∈ ∪ 𝐵 ) |
37 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵 ) ) → 𝑑 ∈ ∪ 𝐵 ) |
38 |
12 33 34 35 36 37
|
om1addcl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵 ) ) → ( 𝑐 ( *𝑝 ‘ 𝐽 ) 𝑑 ) ∈ ∪ 𝐵 ) |
39 |
32 38
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵 ) ) → ( 𝑐 ( +g ‘ ( 𝐽 Ω1 𝑌 ) ) 𝑑 ) ∈ ∪ 𝐵 ) |
40 |
22 18 27 11 30 39 29 5
|
qusaddval |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ∪ 𝐵 ∧ 𝑁 ∈ ∪ 𝐵 ) → ( [ 𝑀 ] ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) + [ 𝑁 ] ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ) = [ ( 𝑀 ( +g ‘ ( 𝐽 Ω1 𝑌 ) ) 𝑁 ) ] ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ) |
41 |
6 7 40
|
mpd3an23 |
⊢ ( 𝜑 → ( [ 𝑀 ] ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) + [ 𝑁 ] ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ) = [ ( 𝑀 ( +g ‘ ( 𝐽 Ω1 𝑌 ) ) 𝑁 ) ] ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ) |
42 |
18
|
imaeq2d |
⊢ ( 𝜑 → ( ( ≃ph ‘ 𝐽 ) “ ∪ 𝐵 ) = ( ( ≃ph ‘ 𝐽 ) “ ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ) ) |
43 |
15 42 18
|
3sstr4d |
⊢ ( 𝜑 → ( ( ≃ph ‘ 𝐽 ) “ ∪ 𝐵 ) ⊆ ∪ 𝐵 ) |
44 |
|
ecinxp |
⊢ ( ( ( ( ≃ph ‘ 𝐽 ) “ ∪ 𝐵 ) ⊆ ∪ 𝐵 ∧ 𝑀 ∈ ∪ 𝐵 ) → [ 𝑀 ] ( ≃ph ‘ 𝐽 ) = [ 𝑀 ] ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ) |
45 |
43 6 44
|
syl2anc |
⊢ ( 𝜑 → [ 𝑀 ] ( ≃ph ‘ 𝐽 ) = [ 𝑀 ] ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ) |
46 |
|
ecinxp |
⊢ ( ( ( ( ≃ph ‘ 𝐽 ) “ ∪ 𝐵 ) ⊆ ∪ 𝐵 ∧ 𝑁 ∈ ∪ 𝐵 ) → [ 𝑁 ] ( ≃ph ‘ 𝐽 ) = [ 𝑁 ] ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ) |
47 |
43 7 46
|
syl2anc |
⊢ ( 𝜑 → [ 𝑁 ] ( ≃ph ‘ 𝐽 ) = [ 𝑁 ] ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ) |
48 |
45 47
|
oveq12d |
⊢ ( 𝜑 → ( [ 𝑀 ] ( ≃ph ‘ 𝐽 ) + [ 𝑁 ] ( ≃ph ‘ 𝐽 ) ) = ( [ 𝑀 ] ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) + [ 𝑁 ] ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ) ) |
49 |
12 3 4 18 6 7
|
om1addcl |
⊢ ( 𝜑 → ( 𝑀 ( *𝑝 ‘ 𝐽 ) 𝑁 ) ∈ ∪ 𝐵 ) |
50 |
|
ecinxp |
⊢ ( ( ( ( ≃ph ‘ 𝐽 ) “ ∪ 𝐵 ) ⊆ ∪ 𝐵 ∧ ( 𝑀 ( *𝑝 ‘ 𝐽 ) 𝑁 ) ∈ ∪ 𝐵 ) → [ ( 𝑀 ( *𝑝 ‘ 𝐽 ) 𝑁 ) ] ( ≃ph ‘ 𝐽 ) = [ ( 𝑀 ( *𝑝 ‘ 𝐽 ) 𝑁 ) ] ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ) |
51 |
43 49 50
|
syl2anc |
⊢ ( 𝜑 → [ ( 𝑀 ( *𝑝 ‘ 𝐽 ) 𝑁 ) ] ( ≃ph ‘ 𝐽 ) = [ ( 𝑀 ( *𝑝 ‘ 𝐽 ) 𝑁 ) ] ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ) |
52 |
31
|
oveqd |
⊢ ( 𝜑 → ( 𝑀 ( *𝑝 ‘ 𝐽 ) 𝑁 ) = ( 𝑀 ( +g ‘ ( 𝐽 Ω1 𝑌 ) ) 𝑁 ) ) |
53 |
52
|
eceq1d |
⊢ ( 𝜑 → [ ( 𝑀 ( *𝑝 ‘ 𝐽 ) 𝑁 ) ] ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) = [ ( 𝑀 ( +g ‘ ( 𝐽 Ω1 𝑌 ) ) 𝑁 ) ] ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ) |
54 |
51 53
|
eqtrd |
⊢ ( 𝜑 → [ ( 𝑀 ( *𝑝 ‘ 𝐽 ) 𝑁 ) ] ( ≃ph ‘ 𝐽 ) = [ ( 𝑀 ( +g ‘ ( 𝐽 Ω1 𝑌 ) ) 𝑁 ) ] ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ) |
55 |
41 48 54
|
3eqtr4d |
⊢ ( 𝜑 → ( [ 𝑀 ] ( ≃ph ‘ 𝐽 ) + [ 𝑁 ] ( ≃ph ‘ 𝐽 ) ) = [ ( 𝑀 ( *𝑝 ‘ 𝐽 ) 𝑁 ) ] ( ≃ph ‘ 𝐽 ) ) |