Metamath Proof Explorer


Theorem pi1addval

Description: The concatenation of two path-homotopy classes in the fundamental group. (Contributed by Jeff Madsen, 11-Jun-2010) (Revised by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses elpi1.g G=Jπ1Y
elpi1.b B=BaseG
elpi1.1 φJTopOnX
elpi1.2 φYX
pi1addf.p +˙=+G
pi1addval.3 φMB
pi1addval.4 φNB
Assertion pi1addval φMphJ+˙NphJ=M*𝑝JNphJ

Proof

Step Hyp Ref Expression
1 elpi1.g G=Jπ1Y
2 elpi1.b B=BaseG
3 elpi1.1 φJTopOnX
4 elpi1.2 φYX
5 pi1addf.p +˙=+G
6 pi1addval.3 φMB
7 pi1addval.4 φNB
8 eqidd φJΩ1Y/𝑠phJ=JΩ1Y/𝑠phJ
9 eqidd φBaseJΩ1Y=BaseJΩ1Y
10 fvexd φphJV
11 ovexd φJΩ1YV
12 eqid JΩ1Y=JΩ1Y
13 2 a1i φB=BaseG
14 1 3 4 12 13 9 pi1blem φphJBaseJΩ1YBaseJΩ1YBaseJΩ1YIICnJ
15 14 simpld φphJBaseJΩ1YBaseJΩ1Y
16 8 9 10 11 15 qusin φJΩ1Y/𝑠phJ=JΩ1Y/𝑠phJBaseJΩ1Y×BaseJΩ1Y
17 1 3 4 12 pi1val φG=JΩ1Y/𝑠phJ
18 1 3 4 12 13 9 pi1buni φB=BaseJΩ1Y
19 18 sqxpeqd φB×B=BaseJΩ1Y×BaseJΩ1Y
20 19 ineq2d φphJB×B=phJBaseJΩ1Y×BaseJΩ1Y
21 20 oveq2d φJΩ1Y/𝑠phJB×B=JΩ1Y/𝑠phJBaseJΩ1Y×BaseJΩ1Y
22 16 17 21 3eqtr4d φG=JΩ1Y/𝑠phJB×B
23 phtpcer phJErIICnJ
24 23 a1i φphJErIICnJ
25 14 simprd φBaseJΩ1YIICnJ
26 18 25 eqsstrd φBIICnJ
27 24 26 erinxp φphJB×BErB
28 eqid phJB×B=phJB×B
29 eqid +JΩ1Y=+JΩ1Y
30 1 3 4 13 28 12 29 pi1cpbl φaphJB×BcbphJB×Bda+JΩ1YbphJB×Bc+JΩ1Yd
31 12 3 4 om1plusg φ*𝑝J=+JΩ1Y
32 31 oveqdr φcBdBc*𝑝Jd=c+JΩ1Yd
33 3 adantr φcBdBJTopOnX
34 4 adantr φcBdBYX
35 18 adantr φcBdBB=BaseJΩ1Y
36 simprl φcBdBcB
37 simprr φcBdBdB
38 12 33 34 35 36 37 om1addcl φcBdBc*𝑝JdB
39 32 38 eqeltrrd φcBdBc+JΩ1YdB
40 22 18 27 11 30 39 29 5 qusaddval φMBNBMphJB×B+˙NphJB×B=M+JΩ1YNphJB×B
41 6 7 40 mpd3an23 φMphJB×B+˙NphJB×B=M+JΩ1YNphJB×B
42 18 imaeq2d φphJB=phJBaseJΩ1Y
43 15 42 18 3sstr4d φphJBB
44 ecinxp phJBBMBMphJ=MphJB×B
45 43 6 44 syl2anc φMphJ=MphJB×B
46 ecinxp phJBBNBNphJ=NphJB×B
47 43 7 46 syl2anc φNphJ=NphJB×B
48 45 47 oveq12d φMphJ+˙NphJ=MphJB×B+˙NphJB×B
49 12 3 4 18 6 7 om1addcl φM*𝑝JNB
50 ecinxp phJBBM*𝑝JNBM*𝑝JNphJ=M*𝑝JNphJB×B
51 43 49 50 syl2anc φM*𝑝JNphJ=M*𝑝JNphJB×B
52 31 oveqd φM*𝑝JN=M+JΩ1YN
53 52 eceq1d φM*𝑝JNphJB×B=M+JΩ1YNphJB×B
54 51 53 eqtrd φM*𝑝JNphJ=M+JΩ1YNphJB×B
55 41 48 54 3eqtr4d φMphJ+˙NphJ=M*𝑝JNphJ