Description: The concatenation of two path-homotopy classes in the fundamental group. (Contributed by Jeff Madsen, 11-Jun-2010) (Revised by Mario Carneiro, 10-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elpi1.g | |
|
elpi1.b | |
||
elpi1.1 | |
||
elpi1.2 | |
||
pi1addf.p | |
||
pi1addval.3 | |
||
pi1addval.4 | |
||
Assertion | pi1addval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpi1.g | |
|
2 | elpi1.b | |
|
3 | elpi1.1 | |
|
4 | elpi1.2 | |
|
5 | pi1addf.p | |
|
6 | pi1addval.3 | |
|
7 | pi1addval.4 | |
|
8 | eqidd | |
|
9 | eqidd | |
|
10 | fvexd | |
|
11 | ovexd | |
|
12 | eqid | |
|
13 | 2 | a1i | |
14 | 1 3 4 12 13 9 | pi1blem | |
15 | 14 | simpld | |
16 | 8 9 10 11 15 | qusin | |
17 | 1 3 4 12 | pi1val | |
18 | 1 3 4 12 13 9 | pi1buni | |
19 | 18 | sqxpeqd | |
20 | 19 | ineq2d | |
21 | 20 | oveq2d | |
22 | 16 17 21 | 3eqtr4d | |
23 | phtpcer | |
|
24 | 23 | a1i | |
25 | 14 | simprd | |
26 | 18 25 | eqsstrd | |
27 | 24 26 | erinxp | |
28 | eqid | |
|
29 | eqid | |
|
30 | 1 3 4 13 28 12 29 | pi1cpbl | |
31 | 12 3 4 | om1plusg | |
32 | 31 | oveqdr | |
33 | 3 | adantr | |
34 | 4 | adantr | |
35 | 18 | adantr | |
36 | simprl | |
|
37 | simprr | |
|
38 | 12 33 34 35 36 37 | om1addcl | |
39 | 32 38 | eqeltrrd | |
40 | 22 18 27 11 30 39 29 5 | qusaddval | |
41 | 6 7 40 | mpd3an23 | |
42 | 18 | imaeq2d | |
43 | 15 42 18 | 3sstr4d | |
44 | ecinxp | |
|
45 | 43 6 44 | syl2anc | |
46 | ecinxp | |
|
47 | 43 7 46 | syl2anc | |
48 | 45 47 | oveq12d | |
49 | 12 3 4 18 6 7 | om1addcl | |
50 | ecinxp | |
|
51 | 43 49 50 | syl2anc | |
52 | 31 | oveqd | |
53 | 52 | eceq1d | |
54 | 51 53 | eqtrd | |
55 | 41 48 54 | 3eqtr4d | |