Step |
Hyp |
Ref |
Expression |
1 |
|
elpi1.g |
|
2 |
|
elpi1.b |
|
3 |
|
elpi1.1 |
|
4 |
|
elpi1.2 |
|
5 |
|
pi1addf.p |
|
6 |
|
pi1addval.3 |
|
7 |
|
pi1addval.4 |
|
8 |
|
eqidd |
|
9 |
|
eqidd |
|
10 |
|
fvexd |
|
11 |
|
ovexd |
|
12 |
|
eqid |
|
13 |
2
|
a1i |
|
14 |
1 3 4 12 13 9
|
pi1blem |
|
15 |
14
|
simpld |
|
16 |
8 9 10 11 15
|
qusin |
|
17 |
1 3 4 12
|
pi1val |
|
18 |
1 3 4 12 13 9
|
pi1buni |
|
19 |
18
|
sqxpeqd |
|
20 |
19
|
ineq2d |
|
21 |
20
|
oveq2d |
|
22 |
16 17 21
|
3eqtr4d |
|
23 |
|
phtpcer |
|
24 |
23
|
a1i |
|
25 |
14
|
simprd |
|
26 |
18 25
|
eqsstrd |
|
27 |
24 26
|
erinxp |
|
28 |
|
eqid |
|
29 |
|
eqid |
|
30 |
1 3 4 13 28 12 29
|
pi1cpbl |
|
31 |
12 3 4
|
om1plusg |
|
32 |
31
|
oveqdr |
|
33 |
3
|
adantr |
|
34 |
4
|
adantr |
|
35 |
18
|
adantr |
|
36 |
|
simprl |
|
37 |
|
simprr |
|
38 |
12 33 34 35 36 37
|
om1addcl |
|
39 |
32 38
|
eqeltrrd |
|
40 |
22 18 27 11 30 39 29 5
|
qusaddval |
|
41 |
6 7 40
|
mpd3an23 |
|
42 |
18
|
imaeq2d |
|
43 |
15 42 18
|
3sstr4d |
|
44 |
|
ecinxp |
|
45 |
43 6 44
|
syl2anc |
|
46 |
|
ecinxp |
|
47 |
43 7 46
|
syl2anc |
|
48 |
45 47
|
oveq12d |
|
49 |
12 3 4 18 6 7
|
om1addcl |
|
50 |
|
ecinxp |
|
51 |
43 49 50
|
syl2anc |
|
52 |
31
|
oveqd |
|
53 |
52
|
eceq1d |
|
54 |
51 53
|
eqtrd |
|
55 |
41 48 54
|
3eqtr4d |
|