Step |
Hyp |
Ref |
Expression |
1 |
|
pi1fval.g |
⊢ 𝐺 = ( 𝐽 π1 𝑌 ) |
2 |
|
pi1fval.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
3 |
|
pi1fval.3 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
4 |
|
pi1fval.4 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑋 ) |
5 |
|
pi1grplem.z |
⊢ 0 = ( ( 0 [,] 1 ) × { 𝑌 } ) |
6 |
|
eqid |
⊢ ( 𝐽 Ω1 𝑌 ) = ( 𝐽 Ω1 𝑌 ) |
7 |
1 3 4 6
|
pi1val |
⊢ ( 𝜑 → 𝐺 = ( ( 𝐽 Ω1 𝑌 ) /s ( ≃ph ‘ 𝐽 ) ) ) |
8 |
2
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) |
9 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) = ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ) |
10 |
1 3 4 6 8 9
|
pi1buni |
⊢ ( 𝜑 → ∪ 𝐵 = ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ) |
11 |
|
fvexd |
⊢ ( 𝜑 → ( ≃ph ‘ 𝐽 ) ∈ V ) |
12 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐽 Ω1 𝑌 ) ∈ V ) |
13 |
1 3 4 6 8 10
|
pi1blem |
⊢ ( 𝜑 → ( ( ( ≃ph ‘ 𝐽 ) “ ∪ 𝐵 ) ⊆ ∪ 𝐵 ∧ ∪ 𝐵 ⊆ ( II Cn 𝐽 ) ) ) |
14 |
13
|
simpld |
⊢ ( 𝜑 → ( ( ≃ph ‘ 𝐽 ) “ ∪ 𝐵 ) ⊆ ∪ 𝐵 ) |
15 |
7 10 11 12 14
|
qusin |
⊢ ( 𝜑 → 𝐺 = ( ( 𝐽 Ω1 𝑌 ) /s ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ) ) |
16 |
6 3 4
|
om1plusg |
⊢ ( 𝜑 → ( *𝑝 ‘ 𝐽 ) = ( +g ‘ ( 𝐽 Ω1 𝑌 ) ) ) |
17 |
|
phtpcer |
⊢ ( ≃ph ‘ 𝐽 ) Er ( II Cn 𝐽 ) |
18 |
17
|
a1i |
⊢ ( 𝜑 → ( ≃ph ‘ 𝐽 ) Er ( II Cn 𝐽 ) ) |
19 |
13
|
simprd |
⊢ ( 𝜑 → ∪ 𝐵 ⊆ ( II Cn 𝐽 ) ) |
20 |
18 19
|
erinxp |
⊢ ( 𝜑 → ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) Er ∪ 𝐵 ) |
21 |
|
eqid |
⊢ ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) = ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) |
22 |
|
eqid |
⊢ ( +g ‘ ( 𝐽 Ω1 𝑌 ) ) = ( +g ‘ ( 𝐽 Ω1 𝑌 ) ) |
23 |
1 3 4 8 21 6 22
|
pi1cpbl |
⊢ ( 𝜑 → ( ( 𝑎 ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) 𝑐 ∧ 𝑏 ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) 𝑑 ) → ( 𝑎 ( +g ‘ ( 𝐽 Ω1 𝑌 ) ) 𝑏 ) ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ( 𝑐 ( +g ‘ ( 𝐽 Ω1 𝑌 ) ) 𝑑 ) ) ) |
24 |
16
|
oveqd |
⊢ ( 𝜑 → ( 𝑎 ( *𝑝 ‘ 𝐽 ) 𝑏 ) = ( 𝑎 ( +g ‘ ( 𝐽 Ω1 𝑌 ) ) 𝑏 ) ) |
25 |
16
|
oveqd |
⊢ ( 𝜑 → ( 𝑐 ( *𝑝 ‘ 𝐽 ) 𝑑 ) = ( 𝑐 ( +g ‘ ( 𝐽 Ω1 𝑌 ) ) 𝑑 ) ) |
26 |
24 25
|
breq12d |
⊢ ( 𝜑 → ( ( 𝑎 ( *𝑝 ‘ 𝐽 ) 𝑏 ) ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ( 𝑐 ( *𝑝 ‘ 𝐽 ) 𝑑 ) ↔ ( 𝑎 ( +g ‘ ( 𝐽 Ω1 𝑌 ) ) 𝑏 ) ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ( 𝑐 ( +g ‘ ( 𝐽 Ω1 𝑌 ) ) 𝑑 ) ) ) |
27 |
23 26
|
sylibrd |
⊢ ( 𝜑 → ( ( 𝑎 ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) 𝑐 ∧ 𝑏 ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) 𝑑 ) → ( 𝑎 ( *𝑝 ‘ 𝐽 ) 𝑏 ) ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ( 𝑐 ( *𝑝 ‘ 𝐽 ) 𝑑 ) ) ) |
28 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ 𝐵 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
29 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ 𝐵 ) → 𝑌 ∈ 𝑋 ) |
30 |
10
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ 𝐵 ) → ∪ 𝐵 = ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ) |
31 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ 𝐵 ) → 𝑥 ∈ ∪ 𝐵 ) |
32 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ 𝐵 ) → 𝑦 ∈ ∪ 𝐵 ) |
33 |
6 28 29 30 31 32
|
om1addcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ 𝐵 ) → ( 𝑥 ( *𝑝 ‘ 𝐽 ) 𝑦 ) ∈ ∪ 𝐵 ) |
34 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ 𝐵 ∧ 𝑧 ∈ ∪ 𝐵 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
35 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ 𝐵 ∧ 𝑧 ∈ ∪ 𝐵 ) ) → 𝑌 ∈ 𝑋 ) |
36 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ 𝐵 ∧ 𝑧 ∈ ∪ 𝐵 ) ) → ∪ 𝐵 = ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ) |
37 |
33
|
3adant3r3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ 𝐵 ∧ 𝑧 ∈ ∪ 𝐵 ) ) → ( 𝑥 ( *𝑝 ‘ 𝐽 ) 𝑦 ) ∈ ∪ 𝐵 ) |
38 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ 𝐵 ∧ 𝑧 ∈ ∪ 𝐵 ) ) → 𝑧 ∈ ∪ 𝐵 ) |
39 |
6 34 35 36 37 38
|
om1addcl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ 𝐵 ∧ 𝑧 ∈ ∪ 𝐵 ) ) → ( ( 𝑥 ( *𝑝 ‘ 𝐽 ) 𝑦 ) ( *𝑝 ‘ 𝐽 ) 𝑧 ) ∈ ∪ 𝐵 ) |
40 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ 𝐵 ∧ 𝑧 ∈ ∪ 𝐵 ) ) → 𝑥 ∈ ∪ 𝐵 ) |
41 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ 𝐵 ∧ 𝑧 ∈ ∪ 𝐵 ) ) → 𝑦 ∈ ∪ 𝐵 ) |
42 |
6 34 35 36 41 38
|
om1addcl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ 𝐵 ∧ 𝑧 ∈ ∪ 𝐵 ) ) → ( 𝑦 ( *𝑝 ‘ 𝐽 ) 𝑧 ) ∈ ∪ 𝐵 ) |
43 |
6 34 35 36 40 42
|
om1addcl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ 𝐵 ∧ 𝑧 ∈ ∪ 𝐵 ) ) → ( 𝑥 ( *𝑝 ‘ 𝐽 ) ( 𝑦 ( *𝑝 ‘ 𝐽 ) 𝑧 ) ) ∈ ∪ 𝐵 ) |
44 |
1 3 4 8
|
pi1eluni |
⊢ ( 𝜑 → ( 𝑥 ∈ ∪ 𝐵 ↔ ( 𝑥 ∈ ( II Cn 𝐽 ) ∧ ( 𝑥 ‘ 0 ) = 𝑌 ∧ ( 𝑥 ‘ 1 ) = 𝑌 ) ) ) |
45 |
44
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐵 ) → ( 𝑥 ∈ ( II Cn 𝐽 ) ∧ ( 𝑥 ‘ 0 ) = 𝑌 ∧ ( 𝑥 ‘ 1 ) = 𝑌 ) ) |
46 |
45
|
3ad2antr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ 𝐵 ∧ 𝑧 ∈ ∪ 𝐵 ) ) → ( 𝑥 ∈ ( II Cn 𝐽 ) ∧ ( 𝑥 ‘ 0 ) = 𝑌 ∧ ( 𝑥 ‘ 1 ) = 𝑌 ) ) |
47 |
46
|
simp1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ 𝐵 ∧ 𝑧 ∈ ∪ 𝐵 ) ) → 𝑥 ∈ ( II Cn 𝐽 ) ) |
48 |
2
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ 𝐵 ∧ 𝑧 ∈ ∪ 𝐵 ) ) → 𝐵 = ( Base ‘ 𝐺 ) ) |
49 |
1 34 35 48
|
pi1eluni |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ 𝐵 ∧ 𝑧 ∈ ∪ 𝐵 ) ) → ( 𝑦 ∈ ∪ 𝐵 ↔ ( 𝑦 ∈ ( II Cn 𝐽 ) ∧ ( 𝑦 ‘ 0 ) = 𝑌 ∧ ( 𝑦 ‘ 1 ) = 𝑌 ) ) ) |
50 |
41 49
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ 𝐵 ∧ 𝑧 ∈ ∪ 𝐵 ) ) → ( 𝑦 ∈ ( II Cn 𝐽 ) ∧ ( 𝑦 ‘ 0 ) = 𝑌 ∧ ( 𝑦 ‘ 1 ) = 𝑌 ) ) |
51 |
50
|
simp1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ 𝐵 ∧ 𝑧 ∈ ∪ 𝐵 ) ) → 𝑦 ∈ ( II Cn 𝐽 ) ) |
52 |
1 34 35 48
|
pi1eluni |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ 𝐵 ∧ 𝑧 ∈ ∪ 𝐵 ) ) → ( 𝑧 ∈ ∪ 𝐵 ↔ ( 𝑧 ∈ ( II Cn 𝐽 ) ∧ ( 𝑧 ‘ 0 ) = 𝑌 ∧ ( 𝑧 ‘ 1 ) = 𝑌 ) ) ) |
53 |
38 52
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ 𝐵 ∧ 𝑧 ∈ ∪ 𝐵 ) ) → ( 𝑧 ∈ ( II Cn 𝐽 ) ∧ ( 𝑧 ‘ 0 ) = 𝑌 ∧ ( 𝑧 ‘ 1 ) = 𝑌 ) ) |
54 |
53
|
simp1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ 𝐵 ∧ 𝑧 ∈ ∪ 𝐵 ) ) → 𝑧 ∈ ( II Cn 𝐽 ) ) |
55 |
46
|
simp3d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ 𝐵 ∧ 𝑧 ∈ ∪ 𝐵 ) ) → ( 𝑥 ‘ 1 ) = 𝑌 ) |
56 |
50
|
simp2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ 𝐵 ∧ 𝑧 ∈ ∪ 𝐵 ) ) → ( 𝑦 ‘ 0 ) = 𝑌 ) |
57 |
55 56
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ 𝐵 ∧ 𝑧 ∈ ∪ 𝐵 ) ) → ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 0 ) ) |
58 |
50
|
simp3d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ 𝐵 ∧ 𝑧 ∈ ∪ 𝐵 ) ) → ( 𝑦 ‘ 1 ) = 𝑌 ) |
59 |
53
|
simp2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ 𝐵 ∧ 𝑧 ∈ ∪ 𝐵 ) ) → ( 𝑧 ‘ 0 ) = 𝑌 ) |
60 |
58 59
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ 𝐵 ∧ 𝑧 ∈ ∪ 𝐵 ) ) → ( 𝑦 ‘ 1 ) = ( 𝑧 ‘ 0 ) ) |
61 |
|
eqid |
⊢ ( 𝑢 ∈ ( 0 [,] 1 ) ↦ if ( 𝑢 ≤ ( 1 / 2 ) , if ( 𝑢 ≤ ( 1 / 4 ) , ( 2 · 𝑢 ) , ( 𝑢 + ( 1 / 4 ) ) ) , ( ( 𝑢 / 2 ) + ( 1 / 2 ) ) ) ) = ( 𝑢 ∈ ( 0 [,] 1 ) ↦ if ( 𝑢 ≤ ( 1 / 2 ) , if ( 𝑢 ≤ ( 1 / 4 ) , ( 2 · 𝑢 ) , ( 𝑢 + ( 1 / 4 ) ) ) , ( ( 𝑢 / 2 ) + ( 1 / 2 ) ) ) ) |
62 |
47 51 54 57 60 61
|
pcoass |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ 𝐵 ∧ 𝑧 ∈ ∪ 𝐵 ) ) → ( ( 𝑥 ( *𝑝 ‘ 𝐽 ) 𝑦 ) ( *𝑝 ‘ 𝐽 ) 𝑧 ) ( ≃ph ‘ 𝐽 ) ( 𝑥 ( *𝑝 ‘ 𝐽 ) ( 𝑦 ( *𝑝 ‘ 𝐽 ) 𝑧 ) ) ) |
63 |
|
brinxp2 |
⊢ ( ( ( 𝑥 ( *𝑝 ‘ 𝐽 ) 𝑦 ) ( *𝑝 ‘ 𝐽 ) 𝑧 ) ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ( 𝑥 ( *𝑝 ‘ 𝐽 ) ( 𝑦 ( *𝑝 ‘ 𝐽 ) 𝑧 ) ) ↔ ( ( ( ( 𝑥 ( *𝑝 ‘ 𝐽 ) 𝑦 ) ( *𝑝 ‘ 𝐽 ) 𝑧 ) ∈ ∪ 𝐵 ∧ ( 𝑥 ( *𝑝 ‘ 𝐽 ) ( 𝑦 ( *𝑝 ‘ 𝐽 ) 𝑧 ) ) ∈ ∪ 𝐵 ) ∧ ( ( 𝑥 ( *𝑝 ‘ 𝐽 ) 𝑦 ) ( *𝑝 ‘ 𝐽 ) 𝑧 ) ( ≃ph ‘ 𝐽 ) ( 𝑥 ( *𝑝 ‘ 𝐽 ) ( 𝑦 ( *𝑝 ‘ 𝐽 ) 𝑧 ) ) ) ) |
64 |
39 43 62 63
|
syl21anbrc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝐵 ∧ 𝑦 ∈ ∪ 𝐵 ∧ 𝑧 ∈ ∪ 𝐵 ) ) → ( ( 𝑥 ( *𝑝 ‘ 𝐽 ) 𝑦 ) ( *𝑝 ‘ 𝐽 ) 𝑧 ) ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ( 𝑥 ( *𝑝 ‘ 𝐽 ) ( 𝑦 ( *𝑝 ‘ 𝐽 ) 𝑧 ) ) ) |
65 |
5
|
pcoptcl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌 ∈ 𝑋 ) → ( 0 ∈ ( II Cn 𝐽 ) ∧ ( 0 ‘ 0 ) = 𝑌 ∧ ( 0 ‘ 1 ) = 𝑌 ) ) |
66 |
3 4 65
|
syl2anc |
⊢ ( 𝜑 → ( 0 ∈ ( II Cn 𝐽 ) ∧ ( 0 ‘ 0 ) = 𝑌 ∧ ( 0 ‘ 1 ) = 𝑌 ) ) |
67 |
1 3 4 8
|
pi1eluni |
⊢ ( 𝜑 → ( 0 ∈ ∪ 𝐵 ↔ ( 0 ∈ ( II Cn 𝐽 ) ∧ ( 0 ‘ 0 ) = 𝑌 ∧ ( 0 ‘ 1 ) = 𝑌 ) ) ) |
68 |
66 67
|
mpbird |
⊢ ( 𝜑 → 0 ∈ ∪ 𝐵 ) |
69 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐵 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
70 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐵 ) → 𝑌 ∈ 𝑋 ) |
71 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐵 ) → ∪ 𝐵 = ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ) |
72 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐵 ) → 0 ∈ ∪ 𝐵 ) |
73 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐵 ) → 𝑥 ∈ ∪ 𝐵 ) |
74 |
6 69 70 71 72 73
|
om1addcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐵 ) → ( 0 ( *𝑝 ‘ 𝐽 ) 𝑥 ) ∈ ∪ 𝐵 ) |
75 |
19
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐵 ) → 𝑥 ∈ ( II Cn 𝐽 ) ) |
76 |
45
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐵 ) → ( 𝑥 ‘ 0 ) = 𝑌 ) |
77 |
5
|
pcopt |
⊢ ( ( 𝑥 ∈ ( II Cn 𝐽 ) ∧ ( 𝑥 ‘ 0 ) = 𝑌 ) → ( 0 ( *𝑝 ‘ 𝐽 ) 𝑥 ) ( ≃ph ‘ 𝐽 ) 𝑥 ) |
78 |
75 76 77
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐵 ) → ( 0 ( *𝑝 ‘ 𝐽 ) 𝑥 ) ( ≃ph ‘ 𝐽 ) 𝑥 ) |
79 |
|
brinxp2 |
⊢ ( ( 0 ( *𝑝 ‘ 𝐽 ) 𝑥 ) ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) 𝑥 ↔ ( ( ( 0 ( *𝑝 ‘ 𝐽 ) 𝑥 ) ∈ ∪ 𝐵 ∧ 𝑥 ∈ ∪ 𝐵 ) ∧ ( 0 ( *𝑝 ‘ 𝐽 ) 𝑥 ) ( ≃ph ‘ 𝐽 ) 𝑥 ) ) |
80 |
74 73 78 79
|
syl21anbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐵 ) → ( 0 ( *𝑝 ‘ 𝐽 ) 𝑥 ) ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) 𝑥 ) |
81 |
|
eqid |
⊢ ( 𝑎 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 ‘ ( 1 − 𝑎 ) ) ) = ( 𝑎 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 ‘ ( 1 − 𝑎 ) ) ) |
82 |
81
|
pcorevcl |
⊢ ( 𝑥 ∈ ( II Cn 𝐽 ) → ( ( 𝑎 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 ‘ ( 1 − 𝑎 ) ) ) ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑎 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 ‘ ( 1 − 𝑎 ) ) ) ‘ 0 ) = ( 𝑥 ‘ 1 ) ∧ ( ( 𝑎 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 ‘ ( 1 − 𝑎 ) ) ) ‘ 1 ) = ( 𝑥 ‘ 0 ) ) ) |
83 |
75 82
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐵 ) → ( ( 𝑎 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 ‘ ( 1 − 𝑎 ) ) ) ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑎 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 ‘ ( 1 − 𝑎 ) ) ) ‘ 0 ) = ( 𝑥 ‘ 1 ) ∧ ( ( 𝑎 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 ‘ ( 1 − 𝑎 ) ) ) ‘ 1 ) = ( 𝑥 ‘ 0 ) ) ) |
84 |
83
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐵 ) → ( 𝑎 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 ‘ ( 1 − 𝑎 ) ) ) ∈ ( II Cn 𝐽 ) ) |
85 |
83
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐵 ) → ( ( 𝑎 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 ‘ ( 1 − 𝑎 ) ) ) ‘ 0 ) = ( 𝑥 ‘ 1 ) ) |
86 |
45
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐵 ) → ( 𝑥 ‘ 1 ) = 𝑌 ) |
87 |
85 86
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐵 ) → ( ( 𝑎 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 ‘ ( 1 − 𝑎 ) ) ) ‘ 0 ) = 𝑌 ) |
88 |
83
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐵 ) → ( ( 𝑎 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 ‘ ( 1 − 𝑎 ) ) ) ‘ 1 ) = ( 𝑥 ‘ 0 ) ) |
89 |
88 76
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐵 ) → ( ( 𝑎 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 ‘ ( 1 − 𝑎 ) ) ) ‘ 1 ) = 𝑌 ) |
90 |
1 3 4 8
|
pi1eluni |
⊢ ( 𝜑 → ( ( 𝑎 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 ‘ ( 1 − 𝑎 ) ) ) ∈ ∪ 𝐵 ↔ ( ( 𝑎 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 ‘ ( 1 − 𝑎 ) ) ) ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑎 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 ‘ ( 1 − 𝑎 ) ) ) ‘ 0 ) = 𝑌 ∧ ( ( 𝑎 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 ‘ ( 1 − 𝑎 ) ) ) ‘ 1 ) = 𝑌 ) ) ) |
91 |
90
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐵 ) → ( ( 𝑎 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 ‘ ( 1 − 𝑎 ) ) ) ∈ ∪ 𝐵 ↔ ( ( 𝑎 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 ‘ ( 1 − 𝑎 ) ) ) ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑎 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 ‘ ( 1 − 𝑎 ) ) ) ‘ 0 ) = 𝑌 ∧ ( ( 𝑎 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 ‘ ( 1 − 𝑎 ) ) ) ‘ 1 ) = 𝑌 ) ) ) |
92 |
84 87 89 91
|
mpbir3and |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐵 ) → ( 𝑎 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 ‘ ( 1 − 𝑎 ) ) ) ∈ ∪ 𝐵 ) |
93 |
6 69 70 71 92 73
|
om1addcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐵 ) → ( ( 𝑎 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 ‘ ( 1 − 𝑎 ) ) ) ( *𝑝 ‘ 𝐽 ) 𝑥 ) ∈ ∪ 𝐵 ) |
94 |
|
eqid |
⊢ ( ( 0 [,] 1 ) × { ( 𝑥 ‘ 1 ) } ) = ( ( 0 [,] 1 ) × { ( 𝑥 ‘ 1 ) } ) |
95 |
81 94
|
pcorev |
⊢ ( 𝑥 ∈ ( II Cn 𝐽 ) → ( ( 𝑎 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 ‘ ( 1 − 𝑎 ) ) ) ( *𝑝 ‘ 𝐽 ) 𝑥 ) ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝑥 ‘ 1 ) } ) ) |
96 |
75 95
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐵 ) → ( ( 𝑎 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 ‘ ( 1 − 𝑎 ) ) ) ( *𝑝 ‘ 𝐽 ) 𝑥 ) ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝑥 ‘ 1 ) } ) ) |
97 |
86
|
sneqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐵 ) → { ( 𝑥 ‘ 1 ) } = { 𝑌 } ) |
98 |
97
|
xpeq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐵 ) → ( ( 0 [,] 1 ) × { ( 𝑥 ‘ 1 ) } ) = ( ( 0 [,] 1 ) × { 𝑌 } ) ) |
99 |
5 98
|
eqtr4id |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐵 ) → 0 = ( ( 0 [,] 1 ) × { ( 𝑥 ‘ 1 ) } ) ) |
100 |
96 99
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐵 ) → ( ( 𝑎 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 ‘ ( 1 − 𝑎 ) ) ) ( *𝑝 ‘ 𝐽 ) 𝑥 ) ( ≃ph ‘ 𝐽 ) 0 ) |
101 |
|
brinxp2 |
⊢ ( ( ( 𝑎 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 ‘ ( 1 − 𝑎 ) ) ) ( *𝑝 ‘ 𝐽 ) 𝑥 ) ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) 0 ↔ ( ( ( ( 𝑎 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 ‘ ( 1 − 𝑎 ) ) ) ( *𝑝 ‘ 𝐽 ) 𝑥 ) ∈ ∪ 𝐵 ∧ 0 ∈ ∪ 𝐵 ) ∧ ( ( 𝑎 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 ‘ ( 1 − 𝑎 ) ) ) ( *𝑝 ‘ 𝐽 ) 𝑥 ) ( ≃ph ‘ 𝐽 ) 0 ) ) |
102 |
93 72 100 101
|
syl21anbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐵 ) → ( ( 𝑎 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 ‘ ( 1 − 𝑎 ) ) ) ( *𝑝 ‘ 𝐽 ) 𝑥 ) ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) 0 ) |
103 |
15 10 16 20 12 27 33 64 68 80 92 102
|
qusgrp2 |
⊢ ( 𝜑 → ( 𝐺 ∈ Grp ∧ [ 0 ] ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) = ( 0g ‘ 𝐺 ) ) ) |
104 |
|
ecinxp |
⊢ ( ( ( ( ≃ph ‘ 𝐽 ) “ ∪ 𝐵 ) ⊆ ∪ 𝐵 ∧ 0 ∈ ∪ 𝐵 ) → [ 0 ] ( ≃ph ‘ 𝐽 ) = [ 0 ] ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ) |
105 |
14 68 104
|
syl2anc |
⊢ ( 𝜑 → [ 0 ] ( ≃ph ‘ 𝐽 ) = [ 0 ] ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ) |
106 |
105
|
eqeq1d |
⊢ ( 𝜑 → ( [ 0 ] ( ≃ph ‘ 𝐽 ) = ( 0g ‘ 𝐺 ) ↔ [ 0 ] ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) = ( 0g ‘ 𝐺 ) ) ) |
107 |
106
|
anbi2d |
⊢ ( 𝜑 → ( ( 𝐺 ∈ Grp ∧ [ 0 ] ( ≃ph ‘ 𝐽 ) = ( 0g ‘ 𝐺 ) ) ↔ ( 𝐺 ∈ Grp ∧ [ 0 ] ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) = ( 0g ‘ 𝐺 ) ) ) ) |
108 |
103 107
|
mpbird |
⊢ ( 𝜑 → ( 𝐺 ∈ Grp ∧ [ 0 ] ( ≃ph ‘ 𝐽 ) = ( 0g ‘ 𝐺 ) ) ) |