| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pi1fval.g | ⊢ 𝐺  =  ( 𝐽  π1  𝑌 ) | 
						
							| 2 |  | pi1fval.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 3 |  | pi1fval.3 | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 4 |  | pi1fval.4 | ⊢ ( 𝜑  →  𝑌  ∈  𝑋 ) | 
						
							| 5 |  | pi1grplem.z | ⊢  0   =  ( ( 0 [,] 1 )  ×  { 𝑌 } ) | 
						
							| 6 |  | eqid | ⊢ ( 𝐽  Ω1  𝑌 )  =  ( 𝐽  Ω1  𝑌 ) | 
						
							| 7 | 1 3 4 6 | pi1val | ⊢ ( 𝜑  →  𝐺  =  ( ( 𝐽  Ω1  𝑌 )  /s  (  ≃ph ‘ 𝐽 ) ) ) | 
						
							| 8 | 2 | a1i | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐺 ) ) | 
						
							| 9 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ ( 𝐽  Ω1  𝑌 ) )  =  ( Base ‘ ( 𝐽  Ω1  𝑌 ) ) ) | 
						
							| 10 | 1 3 4 6 8 9 | pi1buni | ⊢ ( 𝜑  →  ∪  𝐵  =  ( Base ‘ ( 𝐽  Ω1  𝑌 ) ) ) | 
						
							| 11 |  | fvexd | ⊢ ( 𝜑  →  (  ≃ph ‘ 𝐽 )  ∈  V ) | 
						
							| 12 |  | ovexd | ⊢ ( 𝜑  →  ( 𝐽  Ω1  𝑌 )  ∈  V ) | 
						
							| 13 | 1 3 4 6 8 10 | pi1blem | ⊢ ( 𝜑  →  ( ( (  ≃ph ‘ 𝐽 )  “  ∪  𝐵 )  ⊆  ∪  𝐵  ∧  ∪  𝐵  ⊆  ( II  Cn  𝐽 ) ) ) | 
						
							| 14 | 13 | simpld | ⊢ ( 𝜑  →  ( (  ≃ph ‘ 𝐽 )  “  ∪  𝐵 )  ⊆  ∪  𝐵 ) | 
						
							| 15 | 7 10 11 12 14 | qusin | ⊢ ( 𝜑  →  𝐺  =  ( ( 𝐽  Ω1  𝑌 )  /s  ( (  ≃ph ‘ 𝐽 )  ∩  ( ∪  𝐵  ×  ∪  𝐵 ) ) ) ) | 
						
							| 16 | 6 3 4 | om1plusg | ⊢ ( 𝜑  →  ( *𝑝 ‘ 𝐽 )  =  ( +g ‘ ( 𝐽  Ω1  𝑌 ) ) ) | 
						
							| 17 |  | phtpcer | ⊢ (  ≃ph ‘ 𝐽 )  Er  ( II  Cn  𝐽 ) | 
						
							| 18 | 17 | a1i | ⊢ ( 𝜑  →  (  ≃ph ‘ 𝐽 )  Er  ( II  Cn  𝐽 ) ) | 
						
							| 19 | 13 | simprd | ⊢ ( 𝜑  →  ∪  𝐵  ⊆  ( II  Cn  𝐽 ) ) | 
						
							| 20 | 18 19 | erinxp | ⊢ ( 𝜑  →  ( (  ≃ph ‘ 𝐽 )  ∩  ( ∪  𝐵  ×  ∪  𝐵 ) )  Er  ∪  𝐵 ) | 
						
							| 21 |  | eqid | ⊢ ( (  ≃ph ‘ 𝐽 )  ∩  ( ∪  𝐵  ×  ∪  𝐵 ) )  =  ( (  ≃ph ‘ 𝐽 )  ∩  ( ∪  𝐵  ×  ∪  𝐵 ) ) | 
						
							| 22 |  | eqid | ⊢ ( +g ‘ ( 𝐽  Ω1  𝑌 ) )  =  ( +g ‘ ( 𝐽  Ω1  𝑌 ) ) | 
						
							| 23 | 1 3 4 8 21 6 22 | pi1cpbl | ⊢ ( 𝜑  →  ( ( 𝑎 ( (  ≃ph ‘ 𝐽 )  ∩  ( ∪  𝐵  ×  ∪  𝐵 ) ) 𝑐  ∧  𝑏 ( (  ≃ph ‘ 𝐽 )  ∩  ( ∪  𝐵  ×  ∪  𝐵 ) ) 𝑑 )  →  ( 𝑎 ( +g ‘ ( 𝐽  Ω1  𝑌 ) ) 𝑏 ) ( (  ≃ph ‘ 𝐽 )  ∩  ( ∪  𝐵  ×  ∪  𝐵 ) ) ( 𝑐 ( +g ‘ ( 𝐽  Ω1  𝑌 ) ) 𝑑 ) ) ) | 
						
							| 24 | 16 | oveqd | ⊢ ( 𝜑  →  ( 𝑎 ( *𝑝 ‘ 𝐽 ) 𝑏 )  =  ( 𝑎 ( +g ‘ ( 𝐽  Ω1  𝑌 ) ) 𝑏 ) ) | 
						
							| 25 | 16 | oveqd | ⊢ ( 𝜑  →  ( 𝑐 ( *𝑝 ‘ 𝐽 ) 𝑑 )  =  ( 𝑐 ( +g ‘ ( 𝐽  Ω1  𝑌 ) ) 𝑑 ) ) | 
						
							| 26 | 24 25 | breq12d | ⊢ ( 𝜑  →  ( ( 𝑎 ( *𝑝 ‘ 𝐽 ) 𝑏 ) ( (  ≃ph ‘ 𝐽 )  ∩  ( ∪  𝐵  ×  ∪  𝐵 ) ) ( 𝑐 ( *𝑝 ‘ 𝐽 ) 𝑑 )  ↔  ( 𝑎 ( +g ‘ ( 𝐽  Ω1  𝑌 ) ) 𝑏 ) ( (  ≃ph ‘ 𝐽 )  ∩  ( ∪  𝐵  ×  ∪  𝐵 ) ) ( 𝑐 ( +g ‘ ( 𝐽  Ω1  𝑌 ) ) 𝑑 ) ) ) | 
						
							| 27 | 23 26 | sylibrd | ⊢ ( 𝜑  →  ( ( 𝑎 ( (  ≃ph ‘ 𝐽 )  ∩  ( ∪  𝐵  ×  ∪  𝐵 ) ) 𝑐  ∧  𝑏 ( (  ≃ph ‘ 𝐽 )  ∩  ( ∪  𝐵  ×  ∪  𝐵 ) ) 𝑑 )  →  ( 𝑎 ( *𝑝 ‘ 𝐽 ) 𝑏 ) ( (  ≃ph ‘ 𝐽 )  ∩  ( ∪  𝐵  ×  ∪  𝐵 ) ) ( 𝑐 ( *𝑝 ‘ 𝐽 ) 𝑑 ) ) ) | 
						
							| 28 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝐵  ∧  𝑦  ∈  ∪  𝐵 )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 29 | 4 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝐵  ∧  𝑦  ∈  ∪  𝐵 )  →  𝑌  ∈  𝑋 ) | 
						
							| 30 | 10 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝐵  ∧  𝑦  ∈  ∪  𝐵 )  →  ∪  𝐵  =  ( Base ‘ ( 𝐽  Ω1  𝑌 ) ) ) | 
						
							| 31 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝐵  ∧  𝑦  ∈  ∪  𝐵 )  →  𝑥  ∈  ∪  𝐵 ) | 
						
							| 32 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝐵  ∧  𝑦  ∈  ∪  𝐵 )  →  𝑦  ∈  ∪  𝐵 ) | 
						
							| 33 | 6 28 29 30 31 32 | om1addcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝐵  ∧  𝑦  ∈  ∪  𝐵 )  →  ( 𝑥 ( *𝑝 ‘ 𝐽 ) 𝑦 )  ∈  ∪  𝐵 ) | 
						
							| 34 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝐵  ∧  𝑦  ∈  ∪  𝐵  ∧  𝑧  ∈  ∪  𝐵 ) )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 35 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝐵  ∧  𝑦  ∈  ∪  𝐵  ∧  𝑧  ∈  ∪  𝐵 ) )  →  𝑌  ∈  𝑋 ) | 
						
							| 36 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝐵  ∧  𝑦  ∈  ∪  𝐵  ∧  𝑧  ∈  ∪  𝐵 ) )  →  ∪  𝐵  =  ( Base ‘ ( 𝐽  Ω1  𝑌 ) ) ) | 
						
							| 37 | 33 | 3adant3r3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝐵  ∧  𝑦  ∈  ∪  𝐵  ∧  𝑧  ∈  ∪  𝐵 ) )  →  ( 𝑥 ( *𝑝 ‘ 𝐽 ) 𝑦 )  ∈  ∪  𝐵 ) | 
						
							| 38 |  | simpr3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝐵  ∧  𝑦  ∈  ∪  𝐵  ∧  𝑧  ∈  ∪  𝐵 ) )  →  𝑧  ∈  ∪  𝐵 ) | 
						
							| 39 | 6 34 35 36 37 38 | om1addcl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝐵  ∧  𝑦  ∈  ∪  𝐵  ∧  𝑧  ∈  ∪  𝐵 ) )  →  ( ( 𝑥 ( *𝑝 ‘ 𝐽 ) 𝑦 ) ( *𝑝 ‘ 𝐽 ) 𝑧 )  ∈  ∪  𝐵 ) | 
						
							| 40 |  | simpr1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝐵  ∧  𝑦  ∈  ∪  𝐵  ∧  𝑧  ∈  ∪  𝐵 ) )  →  𝑥  ∈  ∪  𝐵 ) | 
						
							| 41 |  | simpr2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝐵  ∧  𝑦  ∈  ∪  𝐵  ∧  𝑧  ∈  ∪  𝐵 ) )  →  𝑦  ∈  ∪  𝐵 ) | 
						
							| 42 | 6 34 35 36 41 38 | om1addcl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝐵  ∧  𝑦  ∈  ∪  𝐵  ∧  𝑧  ∈  ∪  𝐵 ) )  →  ( 𝑦 ( *𝑝 ‘ 𝐽 ) 𝑧 )  ∈  ∪  𝐵 ) | 
						
							| 43 | 6 34 35 36 40 42 | om1addcl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝐵  ∧  𝑦  ∈  ∪  𝐵  ∧  𝑧  ∈  ∪  𝐵 ) )  →  ( 𝑥 ( *𝑝 ‘ 𝐽 ) ( 𝑦 ( *𝑝 ‘ 𝐽 ) 𝑧 ) )  ∈  ∪  𝐵 ) | 
						
							| 44 | 1 3 4 8 | pi1eluni | ⊢ ( 𝜑  →  ( 𝑥  ∈  ∪  𝐵  ↔  ( 𝑥  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑥 ‘ 0 )  =  𝑌  ∧  ( 𝑥 ‘ 1 )  =  𝑌 ) ) ) | 
						
							| 45 | 44 | biimpa | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝐵 )  →  ( 𝑥  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑥 ‘ 0 )  =  𝑌  ∧  ( 𝑥 ‘ 1 )  =  𝑌 ) ) | 
						
							| 46 | 45 | 3ad2antr1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝐵  ∧  𝑦  ∈  ∪  𝐵  ∧  𝑧  ∈  ∪  𝐵 ) )  →  ( 𝑥  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑥 ‘ 0 )  =  𝑌  ∧  ( 𝑥 ‘ 1 )  =  𝑌 ) ) | 
						
							| 47 | 46 | simp1d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝐵  ∧  𝑦  ∈  ∪  𝐵  ∧  𝑧  ∈  ∪  𝐵 ) )  →  𝑥  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 48 | 2 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝐵  ∧  𝑦  ∈  ∪  𝐵  ∧  𝑧  ∈  ∪  𝐵 ) )  →  𝐵  =  ( Base ‘ 𝐺 ) ) | 
						
							| 49 | 1 34 35 48 | pi1eluni | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝐵  ∧  𝑦  ∈  ∪  𝐵  ∧  𝑧  ∈  ∪  𝐵 ) )  →  ( 𝑦  ∈  ∪  𝐵  ↔  ( 𝑦  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑦 ‘ 0 )  =  𝑌  ∧  ( 𝑦 ‘ 1 )  =  𝑌 ) ) ) | 
						
							| 50 | 41 49 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝐵  ∧  𝑦  ∈  ∪  𝐵  ∧  𝑧  ∈  ∪  𝐵 ) )  →  ( 𝑦  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑦 ‘ 0 )  =  𝑌  ∧  ( 𝑦 ‘ 1 )  =  𝑌 ) ) | 
						
							| 51 | 50 | simp1d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝐵  ∧  𝑦  ∈  ∪  𝐵  ∧  𝑧  ∈  ∪  𝐵 ) )  →  𝑦  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 52 | 1 34 35 48 | pi1eluni | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝐵  ∧  𝑦  ∈  ∪  𝐵  ∧  𝑧  ∈  ∪  𝐵 ) )  →  ( 𝑧  ∈  ∪  𝐵  ↔  ( 𝑧  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑧 ‘ 0 )  =  𝑌  ∧  ( 𝑧 ‘ 1 )  =  𝑌 ) ) ) | 
						
							| 53 | 38 52 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝐵  ∧  𝑦  ∈  ∪  𝐵  ∧  𝑧  ∈  ∪  𝐵 ) )  →  ( 𝑧  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑧 ‘ 0 )  =  𝑌  ∧  ( 𝑧 ‘ 1 )  =  𝑌 ) ) | 
						
							| 54 | 53 | simp1d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝐵  ∧  𝑦  ∈  ∪  𝐵  ∧  𝑧  ∈  ∪  𝐵 ) )  →  𝑧  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 55 | 46 | simp3d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝐵  ∧  𝑦  ∈  ∪  𝐵  ∧  𝑧  ∈  ∪  𝐵 ) )  →  ( 𝑥 ‘ 1 )  =  𝑌 ) | 
						
							| 56 | 50 | simp2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝐵  ∧  𝑦  ∈  ∪  𝐵  ∧  𝑧  ∈  ∪  𝐵 ) )  →  ( 𝑦 ‘ 0 )  =  𝑌 ) | 
						
							| 57 | 55 56 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝐵  ∧  𝑦  ∈  ∪  𝐵  ∧  𝑧  ∈  ∪  𝐵 ) )  →  ( 𝑥 ‘ 1 )  =  ( 𝑦 ‘ 0 ) ) | 
						
							| 58 | 50 | simp3d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝐵  ∧  𝑦  ∈  ∪  𝐵  ∧  𝑧  ∈  ∪  𝐵 ) )  →  ( 𝑦 ‘ 1 )  =  𝑌 ) | 
						
							| 59 | 53 | simp2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝐵  ∧  𝑦  ∈  ∪  𝐵  ∧  𝑧  ∈  ∪  𝐵 ) )  →  ( 𝑧 ‘ 0 )  =  𝑌 ) | 
						
							| 60 | 58 59 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝐵  ∧  𝑦  ∈  ∪  𝐵  ∧  𝑧  ∈  ∪  𝐵 ) )  →  ( 𝑦 ‘ 1 )  =  ( 𝑧 ‘ 0 ) ) | 
						
							| 61 |  | eqid | ⊢ ( 𝑢  ∈  ( 0 [,] 1 )  ↦  if ( 𝑢  ≤  ( 1  /  2 ) ,  if ( 𝑢  ≤  ( 1  /  4 ) ,  ( 2  ·  𝑢 ) ,  ( 𝑢  +  ( 1  /  4 ) ) ) ,  ( ( 𝑢  /  2 )  +  ( 1  /  2 ) ) ) )  =  ( 𝑢  ∈  ( 0 [,] 1 )  ↦  if ( 𝑢  ≤  ( 1  /  2 ) ,  if ( 𝑢  ≤  ( 1  /  4 ) ,  ( 2  ·  𝑢 ) ,  ( 𝑢  +  ( 1  /  4 ) ) ) ,  ( ( 𝑢  /  2 )  +  ( 1  /  2 ) ) ) ) | 
						
							| 62 | 47 51 54 57 60 61 | pcoass | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝐵  ∧  𝑦  ∈  ∪  𝐵  ∧  𝑧  ∈  ∪  𝐵 ) )  →  ( ( 𝑥 ( *𝑝 ‘ 𝐽 ) 𝑦 ) ( *𝑝 ‘ 𝐽 ) 𝑧 ) (  ≃ph ‘ 𝐽 ) ( 𝑥 ( *𝑝 ‘ 𝐽 ) ( 𝑦 ( *𝑝 ‘ 𝐽 ) 𝑧 ) ) ) | 
						
							| 63 |  | brinxp2 | ⊢ ( ( ( 𝑥 ( *𝑝 ‘ 𝐽 ) 𝑦 ) ( *𝑝 ‘ 𝐽 ) 𝑧 ) ( (  ≃ph ‘ 𝐽 )  ∩  ( ∪  𝐵  ×  ∪  𝐵 ) ) ( 𝑥 ( *𝑝 ‘ 𝐽 ) ( 𝑦 ( *𝑝 ‘ 𝐽 ) 𝑧 ) )  ↔  ( ( ( ( 𝑥 ( *𝑝 ‘ 𝐽 ) 𝑦 ) ( *𝑝 ‘ 𝐽 ) 𝑧 )  ∈  ∪  𝐵  ∧  ( 𝑥 ( *𝑝 ‘ 𝐽 ) ( 𝑦 ( *𝑝 ‘ 𝐽 ) 𝑧 ) )  ∈  ∪  𝐵 )  ∧  ( ( 𝑥 ( *𝑝 ‘ 𝐽 ) 𝑦 ) ( *𝑝 ‘ 𝐽 ) 𝑧 ) (  ≃ph ‘ 𝐽 ) ( 𝑥 ( *𝑝 ‘ 𝐽 ) ( 𝑦 ( *𝑝 ‘ 𝐽 ) 𝑧 ) ) ) ) | 
						
							| 64 | 39 43 62 63 | syl21anbrc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝐵  ∧  𝑦  ∈  ∪  𝐵  ∧  𝑧  ∈  ∪  𝐵 ) )  →  ( ( 𝑥 ( *𝑝 ‘ 𝐽 ) 𝑦 ) ( *𝑝 ‘ 𝐽 ) 𝑧 ) ( (  ≃ph ‘ 𝐽 )  ∩  ( ∪  𝐵  ×  ∪  𝐵 ) ) ( 𝑥 ( *𝑝 ‘ 𝐽 ) ( 𝑦 ( *𝑝 ‘ 𝐽 ) 𝑧 ) ) ) | 
						
							| 65 | 5 | pcoptcl | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑌  ∈  𝑋 )  →  (  0   ∈  ( II  Cn  𝐽 )  ∧  (  0  ‘ 0 )  =  𝑌  ∧  (  0  ‘ 1 )  =  𝑌 ) ) | 
						
							| 66 | 3 4 65 | syl2anc | ⊢ ( 𝜑  →  (  0   ∈  ( II  Cn  𝐽 )  ∧  (  0  ‘ 0 )  =  𝑌  ∧  (  0  ‘ 1 )  =  𝑌 ) ) | 
						
							| 67 | 1 3 4 8 | pi1eluni | ⊢ ( 𝜑  →  (  0   ∈  ∪  𝐵  ↔  (  0   ∈  ( II  Cn  𝐽 )  ∧  (  0  ‘ 0 )  =  𝑌  ∧  (  0  ‘ 1 )  =  𝑌 ) ) ) | 
						
							| 68 | 66 67 | mpbird | ⊢ ( 𝜑  →   0   ∈  ∪  𝐵 ) | 
						
							| 69 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝐵 )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 70 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝐵 )  →  𝑌  ∈  𝑋 ) | 
						
							| 71 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝐵 )  →  ∪  𝐵  =  ( Base ‘ ( 𝐽  Ω1  𝑌 ) ) ) | 
						
							| 72 | 68 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝐵 )  →   0   ∈  ∪  𝐵 ) | 
						
							| 73 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝐵 )  →  𝑥  ∈  ∪  𝐵 ) | 
						
							| 74 | 6 69 70 71 72 73 | om1addcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝐵 )  →  (  0  ( *𝑝 ‘ 𝐽 ) 𝑥 )  ∈  ∪  𝐵 ) | 
						
							| 75 | 19 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝐵 )  →  𝑥  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 76 | 45 | simp2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝐵 )  →  ( 𝑥 ‘ 0 )  =  𝑌 ) | 
						
							| 77 | 5 | pcopt | ⊢ ( ( 𝑥  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑥 ‘ 0 )  =  𝑌 )  →  (  0  ( *𝑝 ‘ 𝐽 ) 𝑥 ) (  ≃ph ‘ 𝐽 ) 𝑥 ) | 
						
							| 78 | 75 76 77 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝐵 )  →  (  0  ( *𝑝 ‘ 𝐽 ) 𝑥 ) (  ≃ph ‘ 𝐽 ) 𝑥 ) | 
						
							| 79 |  | brinxp2 | ⊢ ( (  0  ( *𝑝 ‘ 𝐽 ) 𝑥 ) ( (  ≃ph ‘ 𝐽 )  ∩  ( ∪  𝐵  ×  ∪  𝐵 ) ) 𝑥  ↔  ( ( (  0  ( *𝑝 ‘ 𝐽 ) 𝑥 )  ∈  ∪  𝐵  ∧  𝑥  ∈  ∪  𝐵 )  ∧  (  0  ( *𝑝 ‘ 𝐽 ) 𝑥 ) (  ≃ph ‘ 𝐽 ) 𝑥 ) ) | 
						
							| 80 | 74 73 78 79 | syl21anbrc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝐵 )  →  (  0  ( *𝑝 ‘ 𝐽 ) 𝑥 ) ( (  ≃ph ‘ 𝐽 )  ∩  ( ∪  𝐵  ×  ∪  𝐵 ) ) 𝑥 ) | 
						
							| 81 |  | eqid | ⊢ ( 𝑎  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 ‘ ( 1  −  𝑎 ) ) )  =  ( 𝑎  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 ‘ ( 1  −  𝑎 ) ) ) | 
						
							| 82 | 81 | pcorevcl | ⊢ ( 𝑥  ∈  ( II  Cn  𝐽 )  →  ( ( 𝑎  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 ‘ ( 1  −  𝑎 ) ) )  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑎  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 ‘ ( 1  −  𝑎 ) ) ) ‘ 0 )  =  ( 𝑥 ‘ 1 )  ∧  ( ( 𝑎  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 ‘ ( 1  −  𝑎 ) ) ) ‘ 1 )  =  ( 𝑥 ‘ 0 ) ) ) | 
						
							| 83 | 75 82 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝐵 )  →  ( ( 𝑎  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 ‘ ( 1  −  𝑎 ) ) )  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑎  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 ‘ ( 1  −  𝑎 ) ) ) ‘ 0 )  =  ( 𝑥 ‘ 1 )  ∧  ( ( 𝑎  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 ‘ ( 1  −  𝑎 ) ) ) ‘ 1 )  =  ( 𝑥 ‘ 0 ) ) ) | 
						
							| 84 | 83 | simp1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝐵 )  →  ( 𝑎  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 ‘ ( 1  −  𝑎 ) ) )  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 85 | 83 | simp2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝐵 )  →  ( ( 𝑎  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 ‘ ( 1  −  𝑎 ) ) ) ‘ 0 )  =  ( 𝑥 ‘ 1 ) ) | 
						
							| 86 | 45 | simp3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝐵 )  →  ( 𝑥 ‘ 1 )  =  𝑌 ) | 
						
							| 87 | 85 86 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝐵 )  →  ( ( 𝑎  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 ‘ ( 1  −  𝑎 ) ) ) ‘ 0 )  =  𝑌 ) | 
						
							| 88 | 83 | simp3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝐵 )  →  ( ( 𝑎  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 ‘ ( 1  −  𝑎 ) ) ) ‘ 1 )  =  ( 𝑥 ‘ 0 ) ) | 
						
							| 89 | 88 76 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝐵 )  →  ( ( 𝑎  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 ‘ ( 1  −  𝑎 ) ) ) ‘ 1 )  =  𝑌 ) | 
						
							| 90 | 1 3 4 8 | pi1eluni | ⊢ ( 𝜑  →  ( ( 𝑎  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 ‘ ( 1  −  𝑎 ) ) )  ∈  ∪  𝐵  ↔  ( ( 𝑎  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 ‘ ( 1  −  𝑎 ) ) )  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑎  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 ‘ ( 1  −  𝑎 ) ) ) ‘ 0 )  =  𝑌  ∧  ( ( 𝑎  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 ‘ ( 1  −  𝑎 ) ) ) ‘ 1 )  =  𝑌 ) ) ) | 
						
							| 91 | 90 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝐵 )  →  ( ( 𝑎  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 ‘ ( 1  −  𝑎 ) ) )  ∈  ∪  𝐵  ↔  ( ( 𝑎  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 ‘ ( 1  −  𝑎 ) ) )  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑎  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 ‘ ( 1  −  𝑎 ) ) ) ‘ 0 )  =  𝑌  ∧  ( ( 𝑎  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 ‘ ( 1  −  𝑎 ) ) ) ‘ 1 )  =  𝑌 ) ) ) | 
						
							| 92 | 84 87 89 91 | mpbir3and | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝐵 )  →  ( 𝑎  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 ‘ ( 1  −  𝑎 ) ) )  ∈  ∪  𝐵 ) | 
						
							| 93 | 6 69 70 71 92 73 | om1addcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝐵 )  →  ( ( 𝑎  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 ‘ ( 1  −  𝑎 ) ) ) ( *𝑝 ‘ 𝐽 ) 𝑥 )  ∈  ∪  𝐵 ) | 
						
							| 94 |  | eqid | ⊢ ( ( 0 [,] 1 )  ×  { ( 𝑥 ‘ 1 ) } )  =  ( ( 0 [,] 1 )  ×  { ( 𝑥 ‘ 1 ) } ) | 
						
							| 95 | 81 94 | pcorev | ⊢ ( 𝑥  ∈  ( II  Cn  𝐽 )  →  ( ( 𝑎  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 ‘ ( 1  −  𝑎 ) ) ) ( *𝑝 ‘ 𝐽 ) 𝑥 ) (  ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 )  ×  { ( 𝑥 ‘ 1 ) } ) ) | 
						
							| 96 | 75 95 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝐵 )  →  ( ( 𝑎  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 ‘ ( 1  −  𝑎 ) ) ) ( *𝑝 ‘ 𝐽 ) 𝑥 ) (  ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 )  ×  { ( 𝑥 ‘ 1 ) } ) ) | 
						
							| 97 | 86 | sneqd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝐵 )  →  { ( 𝑥 ‘ 1 ) }  =  { 𝑌 } ) | 
						
							| 98 | 97 | xpeq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝐵 )  →  ( ( 0 [,] 1 )  ×  { ( 𝑥 ‘ 1 ) } )  =  ( ( 0 [,] 1 )  ×  { 𝑌 } ) ) | 
						
							| 99 | 5 98 | eqtr4id | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝐵 )  →   0   =  ( ( 0 [,] 1 )  ×  { ( 𝑥 ‘ 1 ) } ) ) | 
						
							| 100 | 96 99 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝐵 )  →  ( ( 𝑎  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 ‘ ( 1  −  𝑎 ) ) ) ( *𝑝 ‘ 𝐽 ) 𝑥 ) (  ≃ph ‘ 𝐽 )  0  ) | 
						
							| 101 |  | brinxp2 | ⊢ ( ( ( 𝑎  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 ‘ ( 1  −  𝑎 ) ) ) ( *𝑝 ‘ 𝐽 ) 𝑥 ) ( (  ≃ph ‘ 𝐽 )  ∩  ( ∪  𝐵  ×  ∪  𝐵 ) )  0   ↔  ( ( ( ( 𝑎  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 ‘ ( 1  −  𝑎 ) ) ) ( *𝑝 ‘ 𝐽 ) 𝑥 )  ∈  ∪  𝐵  ∧   0   ∈  ∪  𝐵 )  ∧  ( ( 𝑎  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 ‘ ( 1  −  𝑎 ) ) ) ( *𝑝 ‘ 𝐽 ) 𝑥 ) (  ≃ph ‘ 𝐽 )  0  ) ) | 
						
							| 102 | 93 72 100 101 | syl21anbrc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝐵 )  →  ( ( 𝑎  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 ‘ ( 1  −  𝑎 ) ) ) ( *𝑝 ‘ 𝐽 ) 𝑥 ) ( (  ≃ph ‘ 𝐽 )  ∩  ( ∪  𝐵  ×  ∪  𝐵 ) )  0  ) | 
						
							| 103 | 15 10 16 20 12 27 33 64 68 80 92 102 | qusgrp2 | ⊢ ( 𝜑  →  ( 𝐺  ∈  Grp  ∧  [  0  ] ( (  ≃ph ‘ 𝐽 )  ∩  ( ∪  𝐵  ×  ∪  𝐵 ) )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 104 |  | ecinxp | ⊢ ( ( ( (  ≃ph ‘ 𝐽 )  “  ∪  𝐵 )  ⊆  ∪  𝐵  ∧   0   ∈  ∪  𝐵 )  →  [  0  ] (  ≃ph ‘ 𝐽 )  =  [  0  ] ( (  ≃ph ‘ 𝐽 )  ∩  ( ∪  𝐵  ×  ∪  𝐵 ) ) ) | 
						
							| 105 | 14 68 104 | syl2anc | ⊢ ( 𝜑  →  [  0  ] (  ≃ph ‘ 𝐽 )  =  [  0  ] ( (  ≃ph ‘ 𝐽 )  ∩  ( ∪  𝐵  ×  ∪  𝐵 ) ) ) | 
						
							| 106 | 105 | eqeq1d | ⊢ ( 𝜑  →  ( [  0  ] (  ≃ph ‘ 𝐽 )  =  ( 0g ‘ 𝐺 )  ↔  [  0  ] ( (  ≃ph ‘ 𝐽 )  ∩  ( ∪  𝐵  ×  ∪  𝐵 ) )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 107 | 106 | anbi2d | ⊢ ( 𝜑  →  ( ( 𝐺  ∈  Grp  ∧  [  0  ] (  ≃ph ‘ 𝐽 )  =  ( 0g ‘ 𝐺 ) )  ↔  ( 𝐺  ∈  Grp  ∧  [  0  ] ( (  ≃ph ‘ 𝐽 )  ∩  ( ∪  𝐵  ×  ∪  𝐵 ) )  =  ( 0g ‘ 𝐺 ) ) ) ) | 
						
							| 108 | 103 107 | mpbird | ⊢ ( 𝜑  →  ( 𝐺  ∈  Grp  ∧  [  0  ] (  ≃ph ‘ 𝐽 )  =  ( 0g ‘ 𝐺 ) ) ) |