Metamath Proof Explorer


Theorem pcorevcl

Description: Closure for a reversed path. (Contributed by Mario Carneiro, 12-Feb-2015)

Ref Expression
Hypothesis pcorev.1 𝐺 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 1 − 𝑥 ) ) )
Assertion pcorevcl ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝐺 ∈ ( II Cn 𝐽 ) ∧ ( 𝐺 ‘ 0 ) = ( 𝐹 ‘ 1 ) ∧ ( 𝐺 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) )

Proof

Step Hyp Ref Expression
1 pcorev.1 𝐺 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 1 − 𝑥 ) ) )
2 iitopon II ∈ ( TopOn ‘ ( 0 [,] 1 ) )
3 2 a1i ( 𝐹 ∈ ( II Cn 𝐽 ) → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) )
4 iirevcn ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 1 − 𝑥 ) ) ∈ ( II Cn II )
5 4 a1i ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 1 − 𝑥 ) ) ∈ ( II Cn II ) )
6 id ( 𝐹 ∈ ( II Cn 𝐽 ) → 𝐹 ∈ ( II Cn 𝐽 ) )
7 3 5 6 cnmpt11f ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 1 − 𝑥 ) ) ) ∈ ( II Cn 𝐽 ) )
8 1 7 eqeltrid ( 𝐹 ∈ ( II Cn 𝐽 ) → 𝐺 ∈ ( II Cn 𝐽 ) )
9 0elunit 0 ∈ ( 0 [,] 1 )
10 oveq2 ( 𝑥 = 0 → ( 1 − 𝑥 ) = ( 1 − 0 ) )
11 1m0e1 ( 1 − 0 ) = 1
12 10 11 eqtrdi ( 𝑥 = 0 → ( 1 − 𝑥 ) = 1 )
13 12 fveq2d ( 𝑥 = 0 → ( 𝐹 ‘ ( 1 − 𝑥 ) ) = ( 𝐹 ‘ 1 ) )
14 fvex ( 𝐹 ‘ 1 ) ∈ V
15 13 1 14 fvmpt ( 0 ∈ ( 0 [,] 1 ) → ( 𝐺 ‘ 0 ) = ( 𝐹 ‘ 1 ) )
16 9 15 mp1i ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝐺 ‘ 0 ) = ( 𝐹 ‘ 1 ) )
17 1elunit 1 ∈ ( 0 [,] 1 )
18 oveq2 ( 𝑥 = 1 → ( 1 − 𝑥 ) = ( 1 − 1 ) )
19 1m1e0 ( 1 − 1 ) = 0
20 18 19 eqtrdi ( 𝑥 = 1 → ( 1 − 𝑥 ) = 0 )
21 20 fveq2d ( 𝑥 = 1 → ( 𝐹 ‘ ( 1 − 𝑥 ) ) = ( 𝐹 ‘ 0 ) )
22 fvex ( 𝐹 ‘ 0 ) ∈ V
23 21 1 22 fvmpt ( 1 ∈ ( 0 [,] 1 ) → ( 𝐺 ‘ 1 ) = ( 𝐹 ‘ 0 ) )
24 17 23 mp1i ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝐺 ‘ 1 ) = ( 𝐹 ‘ 0 ) )
25 8 16 24 3jca ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝐺 ∈ ( II Cn 𝐽 ) ∧ ( 𝐺 ‘ 0 ) = ( 𝐹 ‘ 1 ) ∧ ( 𝐺 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) )