Step |
Hyp |
Ref |
Expression |
1 |
|
pcorev.1 |
⊢ 𝐺 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 1 − 𝑥 ) ) ) |
2 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
3 |
2
|
a1i |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
4 |
|
iirevcn |
⊢ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 1 − 𝑥 ) ) ∈ ( II Cn II ) |
5 |
4
|
a1i |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 1 − 𝑥 ) ) ∈ ( II Cn II ) ) |
6 |
|
id |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → 𝐹 ∈ ( II Cn 𝐽 ) ) |
7 |
3 5 6
|
cnmpt11f |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 1 − 𝑥 ) ) ) ∈ ( II Cn 𝐽 ) ) |
8 |
1 7
|
eqeltrid |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → 𝐺 ∈ ( II Cn 𝐽 ) ) |
9 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
10 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 1 − 𝑥 ) = ( 1 − 0 ) ) |
11 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
12 |
10 11
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( 1 − 𝑥 ) = 1 ) |
13 |
12
|
fveq2d |
⊢ ( 𝑥 = 0 → ( 𝐹 ‘ ( 1 − 𝑥 ) ) = ( 𝐹 ‘ 1 ) ) |
14 |
|
fvex |
⊢ ( 𝐹 ‘ 1 ) ∈ V |
15 |
13 1 14
|
fvmpt |
⊢ ( 0 ∈ ( 0 [,] 1 ) → ( 𝐺 ‘ 0 ) = ( 𝐹 ‘ 1 ) ) |
16 |
9 15
|
mp1i |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝐺 ‘ 0 ) = ( 𝐹 ‘ 1 ) ) |
17 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
18 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( 1 − 𝑥 ) = ( 1 − 1 ) ) |
19 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
20 |
18 19
|
eqtrdi |
⊢ ( 𝑥 = 1 → ( 1 − 𝑥 ) = 0 ) |
21 |
20
|
fveq2d |
⊢ ( 𝑥 = 1 → ( 𝐹 ‘ ( 1 − 𝑥 ) ) = ( 𝐹 ‘ 0 ) ) |
22 |
|
fvex |
⊢ ( 𝐹 ‘ 0 ) ∈ V |
23 |
21 1 22
|
fvmpt |
⊢ ( 1 ∈ ( 0 [,] 1 ) → ( 𝐺 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) |
24 |
17 23
|
mp1i |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝐺 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) |
25 |
8 16 24
|
3jca |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝐺 ∈ ( II Cn 𝐽 ) ∧ ( 𝐺 ‘ 0 ) = ( 𝐹 ‘ 1 ) ∧ ( 𝐺 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |