| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pcorev.1 |
⊢ 𝐺 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 1 − 𝑥 ) ) ) |
| 2 |
|
pcorev.2 |
⊢ 𝑃 = ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 1 ) } ) |
| 3 |
|
pcorevlem.3 |
⊢ 𝐻 = ( 𝑠 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ if ( 𝑠 ≤ ( 1 / 2 ) , ( 1 − ( ( 1 − 𝑡 ) · ( 2 · 𝑠 ) ) ) , ( 1 − ( ( 1 − 𝑡 ) · ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) ) ) ) ) |
| 4 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
| 5 |
4
|
a1i |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
| 6 |
|
iirevcn |
⊢ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 1 − 𝑥 ) ) ∈ ( II Cn II ) |
| 7 |
6
|
a1i |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 1 − 𝑥 ) ) ∈ ( II Cn II ) ) |
| 8 |
|
id |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → 𝐹 ∈ ( II Cn 𝐽 ) ) |
| 9 |
5 7 8
|
cnmpt11f |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 1 − 𝑥 ) ) ) ∈ ( II Cn 𝐽 ) ) |
| 10 |
1 9
|
eqeltrid |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → 𝐺 ∈ ( II Cn 𝐽 ) ) |
| 11 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
| 12 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( 1 − 𝑥 ) = ( 1 − 1 ) ) |
| 13 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
| 14 |
12 13
|
eqtrdi |
⊢ ( 𝑥 = 1 → ( 1 − 𝑥 ) = 0 ) |
| 15 |
14
|
fveq2d |
⊢ ( 𝑥 = 1 → ( 𝐹 ‘ ( 1 − 𝑥 ) ) = ( 𝐹 ‘ 0 ) ) |
| 16 |
|
fvex |
⊢ ( 𝐹 ‘ 0 ) ∈ V |
| 17 |
15 1 16
|
fvmpt |
⊢ ( 1 ∈ ( 0 [,] 1 ) → ( 𝐺 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) |
| 18 |
11 17
|
mp1i |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝐺 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) |
| 19 |
10 8 18
|
pcocn |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝐺 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ∈ ( II Cn 𝐽 ) ) |
| 20 |
|
cntop2 |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → 𝐽 ∈ Top ) |
| 21 |
|
toptopon2 |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 22 |
20 21
|
sylib |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 23 |
|
iiuni |
⊢ ( 0 [,] 1 ) = ∪ II |
| 24 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 25 |
23 24
|
cnf |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → 𝐹 : ( 0 [,] 1 ) ⟶ ∪ 𝐽 ) |
| 26 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ∪ 𝐽 ∧ 1 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ 1 ) ∈ ∪ 𝐽 ) |
| 27 |
25 11 26
|
sylancl |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝐹 ‘ 1 ) ∈ ∪ 𝐽 ) |
| 28 |
2
|
pcoptcl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ ( 𝐹 ‘ 1 ) ∈ ∪ 𝐽 ) → ( 𝑃 ∈ ( II Cn 𝐽 ) ∧ ( 𝑃 ‘ 0 ) = ( 𝐹 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) = ( 𝐹 ‘ 1 ) ) ) |
| 29 |
22 27 28
|
syl2anc |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝑃 ∈ ( II Cn 𝐽 ) ∧ ( 𝑃 ‘ 0 ) = ( 𝐹 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) = ( 𝐹 ‘ 1 ) ) ) |
| 30 |
29
|
simp1d |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → 𝑃 ∈ ( II Cn 𝐽 ) ) |
| 31 |
|
eqid |
⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) |
| 32 |
|
eqid |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) |
| 33 |
|
eqid |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) |
| 34 |
|
dfii2 |
⊢ II = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) |
| 35 |
|
0red |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → 0 ∈ ℝ ) |
| 36 |
|
1red |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → 1 ∈ ℝ ) |
| 37 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
| 38 |
|
halfge0 |
⊢ 0 ≤ ( 1 / 2 ) |
| 39 |
|
1re |
⊢ 1 ∈ ℝ |
| 40 |
|
halflt1 |
⊢ ( 1 / 2 ) < 1 |
| 41 |
37 39 40
|
ltleii |
⊢ ( 1 / 2 ) ≤ 1 |
| 42 |
|
elicc01 |
⊢ ( ( 1 / 2 ) ∈ ( 0 [,] 1 ) ↔ ( ( 1 / 2 ) ∈ ℝ ∧ 0 ≤ ( 1 / 2 ) ∧ ( 1 / 2 ) ≤ 1 ) ) |
| 43 |
37 38 41 42
|
mpbir3an |
⊢ ( 1 / 2 ) ∈ ( 0 [,] 1 ) |
| 44 |
43
|
a1i |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 1 / 2 ) ∈ ( 0 [,] 1 ) ) |
| 45 |
|
simprl |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝑠 = ( 1 / 2 ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → 𝑠 = ( 1 / 2 ) ) |
| 46 |
45
|
oveq2d |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝑠 = ( 1 / 2 ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → ( 2 · 𝑠 ) = ( 2 · ( 1 / 2 ) ) ) |
| 47 |
|
2cn |
⊢ 2 ∈ ℂ |
| 48 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 49 |
47 48
|
recidi |
⊢ ( 2 · ( 1 / 2 ) ) = 1 |
| 50 |
46 49
|
eqtrdi |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝑠 = ( 1 / 2 ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → ( 2 · 𝑠 ) = 1 ) |
| 51 |
50
|
oveq1d |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝑠 = ( 1 / 2 ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → ( ( 2 · 𝑠 ) − 1 ) = ( 1 − 1 ) ) |
| 52 |
51 13
|
eqtrdi |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝑠 = ( 1 / 2 ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → ( ( 2 · 𝑠 ) − 1 ) = 0 ) |
| 53 |
52
|
oveq2d |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝑠 = ( 1 / 2 ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) = ( 1 − 0 ) ) |
| 54 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
| 55 |
53 54
|
eqtrdi |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝑠 = ( 1 / 2 ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) = 1 ) |
| 56 |
50 55
|
eqtr4d |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝑠 = ( 1 / 2 ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → ( 2 · 𝑠 ) = ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) |
| 57 |
56
|
oveq2d |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝑠 = ( 1 / 2 ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → ( ( 1 − 𝑡 ) · ( 2 · 𝑠 ) ) = ( ( 1 − 𝑡 ) · ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) ) |
| 58 |
57
|
oveq2d |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝑠 = ( 1 / 2 ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → ( 1 − ( ( 1 − 𝑡 ) · ( 2 · 𝑠 ) ) ) = ( 1 − ( ( 1 − 𝑡 ) · ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) ) ) |
| 59 |
|
retopon |
⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) |
| 60 |
|
0re |
⊢ 0 ∈ ℝ |
| 61 |
|
iccssre |
⊢ ( ( 0 ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ) → ( 0 [,] ( 1 / 2 ) ) ⊆ ℝ ) |
| 62 |
60 37 61
|
mp2an |
⊢ ( 0 [,] ( 1 / 2 ) ) ⊆ ℝ |
| 63 |
|
resttopon |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) ∧ ( 0 [,] ( 1 / 2 ) ) ⊆ ℝ ) → ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ∈ ( TopOn ‘ ( 0 [,] ( 1 / 2 ) ) ) ) |
| 64 |
59 62 63
|
mp2an |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ∈ ( TopOn ‘ ( 0 [,] ( 1 / 2 ) ) ) |
| 65 |
64
|
a1i |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ∈ ( TopOn ‘ ( 0 [,] ( 1 / 2 ) ) ) ) |
| 66 |
65 5
|
cnmpt2nd |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝑠 ∈ ( 0 [,] ( 1 / 2 ) ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ 𝑡 ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ×t II ) Cn II ) ) |
| 67 |
|
oveq2 |
⊢ ( 𝑥 = 𝑡 → ( 1 − 𝑥 ) = ( 1 − 𝑡 ) ) |
| 68 |
65 5 66 5 7 67
|
cnmpt21 |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝑠 ∈ ( 0 [,] ( 1 / 2 ) ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 1 − 𝑡 ) ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ×t II ) Cn II ) ) |
| 69 |
65 5
|
cnmpt1st |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝑠 ∈ ( 0 [,] ( 1 / 2 ) ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ 𝑠 ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ×t II ) Cn ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ) ) |
| 70 |
32
|
iihalf1cn |
⊢ ( 𝑥 ∈ ( 0 [,] ( 1 / 2 ) ) ↦ ( 2 · 𝑥 ) ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) Cn II ) |
| 71 |
70
|
a1i |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝑥 ∈ ( 0 [,] ( 1 / 2 ) ) ↦ ( 2 · 𝑥 ) ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) Cn II ) ) |
| 72 |
|
oveq2 |
⊢ ( 𝑥 = 𝑠 → ( 2 · 𝑥 ) = ( 2 · 𝑠 ) ) |
| 73 |
65 5 69 65 71 72
|
cnmpt21 |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝑠 ∈ ( 0 [,] ( 1 / 2 ) ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 2 · 𝑠 ) ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ×t II ) Cn II ) ) |
| 74 |
|
iimulcn |
⊢ ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 · 𝑦 ) ) ∈ ( ( II ×t II ) Cn II ) |
| 75 |
74
|
a1i |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 · 𝑦 ) ) ∈ ( ( II ×t II ) Cn II ) ) |
| 76 |
|
oveq12 |
⊢ ( ( 𝑥 = ( 1 − 𝑡 ) ∧ 𝑦 = ( 2 · 𝑠 ) ) → ( 𝑥 · 𝑦 ) = ( ( 1 − 𝑡 ) · ( 2 · 𝑠 ) ) ) |
| 77 |
65 5 68 73 5 5 75 76
|
cnmpt22 |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝑠 ∈ ( 0 [,] ( 1 / 2 ) ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 1 − 𝑡 ) · ( 2 · 𝑠 ) ) ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ×t II ) Cn II ) ) |
| 78 |
|
oveq2 |
⊢ ( 𝑥 = ( ( 1 − 𝑡 ) · ( 2 · 𝑠 ) ) → ( 1 − 𝑥 ) = ( 1 − ( ( 1 − 𝑡 ) · ( 2 · 𝑠 ) ) ) ) |
| 79 |
65 5 77 5 7 78
|
cnmpt21 |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝑠 ∈ ( 0 [,] ( 1 / 2 ) ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 1 − ( ( 1 − 𝑡 ) · ( 2 · 𝑠 ) ) ) ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ×t II ) Cn II ) ) |
| 80 |
|
iccssre |
⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 1 / 2 ) [,] 1 ) ⊆ ℝ ) |
| 81 |
37 39 80
|
mp2an |
⊢ ( ( 1 / 2 ) [,] 1 ) ⊆ ℝ |
| 82 |
|
resttopon |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) ∧ ( ( 1 / 2 ) [,] 1 ) ⊆ ℝ ) → ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ∈ ( TopOn ‘ ( ( 1 / 2 ) [,] 1 ) ) ) |
| 83 |
59 81 82
|
mp2an |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ∈ ( TopOn ‘ ( ( 1 / 2 ) [,] 1 ) ) |
| 84 |
83
|
a1i |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ∈ ( TopOn ‘ ( ( 1 / 2 ) [,] 1 ) ) ) |
| 85 |
84 5
|
cnmpt2nd |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝑠 ∈ ( ( 1 / 2 ) [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ 𝑡 ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ×t II ) Cn II ) ) |
| 86 |
84 5 85 5 7 67
|
cnmpt21 |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝑠 ∈ ( ( 1 / 2 ) [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 1 − 𝑡 ) ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ×t II ) Cn II ) ) |
| 87 |
84 5
|
cnmpt1st |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝑠 ∈ ( ( 1 / 2 ) [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ 𝑠 ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ×t II ) Cn ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ) ) |
| 88 |
33
|
iihalf2cn |
⊢ ( 𝑥 ∈ ( ( 1 / 2 ) [,] 1 ) ↦ ( ( 2 · 𝑥 ) − 1 ) ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) Cn II ) |
| 89 |
88
|
a1i |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝑥 ∈ ( ( 1 / 2 ) [,] 1 ) ↦ ( ( 2 · 𝑥 ) − 1 ) ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) Cn II ) ) |
| 90 |
72
|
oveq1d |
⊢ ( 𝑥 = 𝑠 → ( ( 2 · 𝑥 ) − 1 ) = ( ( 2 · 𝑠 ) − 1 ) ) |
| 91 |
84 5 87 84 89 90
|
cnmpt21 |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝑠 ∈ ( ( 1 / 2 ) [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 2 · 𝑠 ) − 1 ) ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ×t II ) Cn II ) ) |
| 92 |
|
oveq2 |
⊢ ( 𝑥 = ( ( 2 · 𝑠 ) − 1 ) → ( 1 − 𝑥 ) = ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) |
| 93 |
84 5 91 5 7 92
|
cnmpt21 |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝑠 ∈ ( ( 1 / 2 ) [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ×t II ) Cn II ) ) |
| 94 |
|
oveq12 |
⊢ ( ( 𝑥 = ( 1 − 𝑡 ) ∧ 𝑦 = ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) → ( 𝑥 · 𝑦 ) = ( ( 1 − 𝑡 ) · ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) ) |
| 95 |
84 5 86 93 5 5 75 94
|
cnmpt22 |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝑠 ∈ ( ( 1 / 2 ) [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 1 − 𝑡 ) · ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ×t II ) Cn II ) ) |
| 96 |
|
oveq2 |
⊢ ( 𝑥 = ( ( 1 − 𝑡 ) · ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) → ( 1 − 𝑥 ) = ( 1 − ( ( 1 − 𝑡 ) · ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) ) ) |
| 97 |
84 5 95 5 7 96
|
cnmpt21 |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝑠 ∈ ( ( 1 / 2 ) [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 1 − ( ( 1 − 𝑡 ) · ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) ) ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ×t II ) Cn II ) ) |
| 98 |
31 32 33 34 35 36 44 5 58 79 97
|
cnmpopc |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝑠 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ if ( 𝑠 ≤ ( 1 / 2 ) , ( 1 − ( ( 1 − 𝑡 ) · ( 2 · 𝑠 ) ) ) , ( 1 − ( ( 1 − 𝑡 ) · ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) ) ) ) ∈ ( ( II ×t II ) Cn II ) ) |
| 99 |
5 5 98 8
|
cnmpt21f |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝑠 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ if ( 𝑠 ≤ ( 1 / 2 ) , ( 1 − ( ( 1 − 𝑡 ) · ( 2 · 𝑠 ) ) ) , ( 1 − ( ( 1 − 𝑡 ) · ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) ) ) ) ) ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
| 100 |
3 99
|
eqeltrid |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → 𝐻 ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
| 101 |
|
simpr |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → 𝑦 ∈ ( 0 [,] 1 ) ) |
| 102 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
| 103 |
|
simpl |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑡 = 0 ) → 𝑠 = 𝑦 ) |
| 104 |
103
|
breq1d |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑡 = 0 ) → ( 𝑠 ≤ ( 1 / 2 ) ↔ 𝑦 ≤ ( 1 / 2 ) ) ) |
| 105 |
|
simpr |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑡 = 0 ) → 𝑡 = 0 ) |
| 106 |
105
|
oveq2d |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑡 = 0 ) → ( 1 − 𝑡 ) = ( 1 − 0 ) ) |
| 107 |
106 54
|
eqtrdi |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑡 = 0 ) → ( 1 − 𝑡 ) = 1 ) |
| 108 |
103
|
oveq2d |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑡 = 0 ) → ( 2 · 𝑠 ) = ( 2 · 𝑦 ) ) |
| 109 |
107 108
|
oveq12d |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑡 = 0 ) → ( ( 1 − 𝑡 ) · ( 2 · 𝑠 ) ) = ( 1 · ( 2 · 𝑦 ) ) ) |
| 110 |
109
|
oveq2d |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑡 = 0 ) → ( 1 − ( ( 1 − 𝑡 ) · ( 2 · 𝑠 ) ) ) = ( 1 − ( 1 · ( 2 · 𝑦 ) ) ) ) |
| 111 |
108
|
oveq1d |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑡 = 0 ) → ( ( 2 · 𝑠 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) |
| 112 |
111
|
oveq2d |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑡 = 0 ) → ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) = ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) |
| 113 |
107 112
|
oveq12d |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑡 = 0 ) → ( ( 1 − 𝑡 ) · ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) = ( 1 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) |
| 114 |
113
|
oveq2d |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑡 = 0 ) → ( 1 − ( ( 1 − 𝑡 ) · ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) ) = ( 1 − ( 1 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) ) |
| 115 |
104 110 114
|
ifbieq12d |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑡 = 0 ) → if ( 𝑠 ≤ ( 1 / 2 ) , ( 1 − ( ( 1 − 𝑡 ) · ( 2 · 𝑠 ) ) ) , ( 1 − ( ( 1 − 𝑡 ) · ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) ) ) = if ( 𝑦 ≤ ( 1 / 2 ) , ( 1 − ( 1 · ( 2 · 𝑦 ) ) ) , ( 1 − ( 1 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) ) ) |
| 116 |
115
|
fveq2d |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑡 = 0 ) → ( 𝐹 ‘ if ( 𝑠 ≤ ( 1 / 2 ) , ( 1 − ( ( 1 − 𝑡 ) · ( 2 · 𝑠 ) ) ) , ( 1 − ( ( 1 − 𝑡 ) · ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) ) ) ) = ( 𝐹 ‘ if ( 𝑦 ≤ ( 1 / 2 ) , ( 1 − ( 1 · ( 2 · 𝑦 ) ) ) , ( 1 − ( 1 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) ) ) ) |
| 117 |
|
fvex |
⊢ ( 𝐹 ‘ if ( 𝑦 ≤ ( 1 / 2 ) , ( 1 − ( 1 · ( 2 · 𝑦 ) ) ) , ( 1 − ( 1 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) ) ) ∈ V |
| 118 |
116 3 117
|
ovmpoa |
⊢ ( ( 𝑦 ∈ ( 0 [,] 1 ) ∧ 0 ∈ ( 0 [,] 1 ) ) → ( 𝑦 𝐻 0 ) = ( 𝐹 ‘ if ( 𝑦 ≤ ( 1 / 2 ) , ( 1 − ( 1 · ( 2 · 𝑦 ) ) ) , ( 1 − ( 1 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) ) ) ) |
| 119 |
101 102 118
|
sylancl |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( 𝑦 𝐻 0 ) = ( 𝐹 ‘ if ( 𝑦 ≤ ( 1 / 2 ) , ( 1 − ( 1 · ( 2 · 𝑦 ) ) ) , ( 1 − ( 1 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) ) ) ) |
| 120 |
|
iftrue |
⊢ ( 𝑦 ≤ ( 1 / 2 ) → if ( 𝑦 ≤ ( 1 / 2 ) , ( 1 − ( 1 · ( 2 · 𝑦 ) ) ) , ( 1 − ( 1 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) ) = ( 1 − ( 1 · ( 2 · 𝑦 ) ) ) ) |
| 121 |
120
|
adantl |
⊢ ( ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ∧ 𝑦 ≤ ( 1 / 2 ) ) → if ( 𝑦 ≤ ( 1 / 2 ) , ( 1 − ( 1 · ( 2 · 𝑦 ) ) ) , ( 1 − ( 1 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) ) = ( 1 − ( 1 · ( 2 · 𝑦 ) ) ) ) |
| 122 |
121
|
fveq2d |
⊢ ( ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ∧ 𝑦 ≤ ( 1 / 2 ) ) → ( 𝐹 ‘ if ( 𝑦 ≤ ( 1 / 2 ) , ( 1 − ( 1 · ( 2 · 𝑦 ) ) ) , ( 1 − ( 1 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) ) ) = ( 𝐹 ‘ ( 1 − ( 1 · ( 2 · 𝑦 ) ) ) ) ) |
| 123 |
|
elii1 |
⊢ ( 𝑦 ∈ ( 0 [,] ( 1 / 2 ) ) ↔ ( 𝑦 ∈ ( 0 [,] 1 ) ∧ 𝑦 ≤ ( 1 / 2 ) ) ) |
| 124 |
10 8
|
pcoval1 |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] ( 1 / 2 ) ) ) → ( ( 𝐺 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 𝑦 ) = ( 𝐺 ‘ ( 2 · 𝑦 ) ) ) |
| 125 |
|
iihalf1 |
⊢ ( 𝑦 ∈ ( 0 [,] ( 1 / 2 ) ) → ( 2 · 𝑦 ) ∈ ( 0 [,] 1 ) ) |
| 126 |
125
|
adantl |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] ( 1 / 2 ) ) ) → ( 2 · 𝑦 ) ∈ ( 0 [,] 1 ) ) |
| 127 |
|
oveq2 |
⊢ ( 𝑥 = ( 2 · 𝑦 ) → ( 1 − 𝑥 ) = ( 1 − ( 2 · 𝑦 ) ) ) |
| 128 |
127
|
fveq2d |
⊢ ( 𝑥 = ( 2 · 𝑦 ) → ( 𝐹 ‘ ( 1 − 𝑥 ) ) = ( 𝐹 ‘ ( 1 − ( 2 · 𝑦 ) ) ) ) |
| 129 |
|
fvex |
⊢ ( 𝐹 ‘ ( 1 − ( 2 · 𝑦 ) ) ) ∈ V |
| 130 |
128 1 129
|
fvmpt |
⊢ ( ( 2 · 𝑦 ) ∈ ( 0 [,] 1 ) → ( 𝐺 ‘ ( 2 · 𝑦 ) ) = ( 𝐹 ‘ ( 1 − ( 2 · 𝑦 ) ) ) ) |
| 131 |
|
unitssre |
⊢ ( 0 [,] 1 ) ⊆ ℝ |
| 132 |
131
|
sseli |
⊢ ( ( 2 · 𝑦 ) ∈ ( 0 [,] 1 ) → ( 2 · 𝑦 ) ∈ ℝ ) |
| 133 |
132
|
recnd |
⊢ ( ( 2 · 𝑦 ) ∈ ( 0 [,] 1 ) → ( 2 · 𝑦 ) ∈ ℂ ) |
| 134 |
133
|
mullidd |
⊢ ( ( 2 · 𝑦 ) ∈ ( 0 [,] 1 ) → ( 1 · ( 2 · 𝑦 ) ) = ( 2 · 𝑦 ) ) |
| 135 |
134
|
oveq2d |
⊢ ( ( 2 · 𝑦 ) ∈ ( 0 [,] 1 ) → ( 1 − ( 1 · ( 2 · 𝑦 ) ) ) = ( 1 − ( 2 · 𝑦 ) ) ) |
| 136 |
135
|
fveq2d |
⊢ ( ( 2 · 𝑦 ) ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ ( 1 − ( 1 · ( 2 · 𝑦 ) ) ) ) = ( 𝐹 ‘ ( 1 − ( 2 · 𝑦 ) ) ) ) |
| 137 |
130 136
|
eqtr4d |
⊢ ( ( 2 · 𝑦 ) ∈ ( 0 [,] 1 ) → ( 𝐺 ‘ ( 2 · 𝑦 ) ) = ( 𝐹 ‘ ( 1 − ( 1 · ( 2 · 𝑦 ) ) ) ) ) |
| 138 |
126 137
|
syl |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] ( 1 / 2 ) ) ) → ( 𝐺 ‘ ( 2 · 𝑦 ) ) = ( 𝐹 ‘ ( 1 − ( 1 · ( 2 · 𝑦 ) ) ) ) ) |
| 139 |
124 138
|
eqtrd |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] ( 1 / 2 ) ) ) → ( ( 𝐺 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 1 − ( 1 · ( 2 · 𝑦 ) ) ) ) ) |
| 140 |
123 139
|
sylan2br |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝑦 ∈ ( 0 [,] 1 ) ∧ 𝑦 ≤ ( 1 / 2 ) ) ) → ( ( 𝐺 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 1 − ( 1 · ( 2 · 𝑦 ) ) ) ) ) |
| 141 |
140
|
anassrs |
⊢ ( ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ∧ 𝑦 ≤ ( 1 / 2 ) ) → ( ( 𝐺 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 1 − ( 1 · ( 2 · 𝑦 ) ) ) ) ) |
| 142 |
122 141
|
eqtr4d |
⊢ ( ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ∧ 𝑦 ≤ ( 1 / 2 ) ) → ( 𝐹 ‘ if ( 𝑦 ≤ ( 1 / 2 ) , ( 1 − ( 1 · ( 2 · 𝑦 ) ) ) , ( 1 − ( 1 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) ) ) = ( ( 𝐺 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 𝑦 ) ) |
| 143 |
|
iffalse |
⊢ ( ¬ 𝑦 ≤ ( 1 / 2 ) → if ( 𝑦 ≤ ( 1 / 2 ) , ( 1 − ( 1 · ( 2 · 𝑦 ) ) ) , ( 1 − ( 1 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) ) = ( 1 − ( 1 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) ) |
| 144 |
143
|
adantl |
⊢ ( ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ∧ ¬ 𝑦 ≤ ( 1 / 2 ) ) → if ( 𝑦 ≤ ( 1 / 2 ) , ( 1 − ( 1 · ( 2 · 𝑦 ) ) ) , ( 1 − ( 1 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) ) = ( 1 − ( 1 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) ) |
| 145 |
144
|
fveq2d |
⊢ ( ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ∧ ¬ 𝑦 ≤ ( 1 / 2 ) ) → ( 𝐹 ‘ if ( 𝑦 ≤ ( 1 / 2 ) , ( 1 − ( 1 · ( 2 · 𝑦 ) ) ) , ( 1 − ( 1 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) ) ) = ( 𝐹 ‘ ( 1 − ( 1 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) ) ) |
| 146 |
|
elii2 |
⊢ ( ( 𝑦 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑦 ≤ ( 1 / 2 ) ) → 𝑦 ∈ ( ( 1 / 2 ) [,] 1 ) ) |
| 147 |
10 8 18
|
pcoval2 |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( ( 1 / 2 ) [,] 1 ) ) → ( ( 𝐺 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( ( 2 · 𝑦 ) − 1 ) ) ) |
| 148 |
|
iihalf2 |
⊢ ( 𝑦 ∈ ( ( 1 / 2 ) [,] 1 ) → ( ( 2 · 𝑦 ) − 1 ) ∈ ( 0 [,] 1 ) ) |
| 149 |
148
|
adantl |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( ( 1 / 2 ) [,] 1 ) ) → ( ( 2 · 𝑦 ) − 1 ) ∈ ( 0 [,] 1 ) ) |
| 150 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 151 |
131
|
sseli |
⊢ ( ( ( 2 · 𝑦 ) − 1 ) ∈ ( 0 [,] 1 ) → ( ( 2 · 𝑦 ) − 1 ) ∈ ℝ ) |
| 152 |
151
|
recnd |
⊢ ( ( ( 2 · 𝑦 ) − 1 ) ∈ ( 0 [,] 1 ) → ( ( 2 · 𝑦 ) − 1 ) ∈ ℂ ) |
| 153 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ ( ( 2 · 𝑦 ) − 1 ) ∈ ℂ ) → ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ∈ ℂ ) |
| 154 |
150 152 153
|
sylancr |
⊢ ( ( ( 2 · 𝑦 ) − 1 ) ∈ ( 0 [,] 1 ) → ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ∈ ℂ ) |
| 155 |
154
|
mullidd |
⊢ ( ( ( 2 · 𝑦 ) − 1 ) ∈ ( 0 [,] 1 ) → ( 1 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) = ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) |
| 156 |
155
|
oveq2d |
⊢ ( ( ( 2 · 𝑦 ) − 1 ) ∈ ( 0 [,] 1 ) → ( 1 − ( 1 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) = ( 1 − ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) |
| 157 |
|
nncan |
⊢ ( ( 1 ∈ ℂ ∧ ( ( 2 · 𝑦 ) − 1 ) ∈ ℂ ) → ( 1 − ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) = ( ( 2 · 𝑦 ) − 1 ) ) |
| 158 |
150 152 157
|
sylancr |
⊢ ( ( ( 2 · 𝑦 ) − 1 ) ∈ ( 0 [,] 1 ) → ( 1 − ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) = ( ( 2 · 𝑦 ) − 1 ) ) |
| 159 |
156 158
|
eqtr2d |
⊢ ( ( ( 2 · 𝑦 ) − 1 ) ∈ ( 0 [,] 1 ) → ( ( 2 · 𝑦 ) − 1 ) = ( 1 − ( 1 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) ) |
| 160 |
149 159
|
syl |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( ( 1 / 2 ) [,] 1 ) ) → ( ( 2 · 𝑦 ) − 1 ) = ( 1 − ( 1 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) ) |
| 161 |
160
|
fveq2d |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( ( 1 / 2 ) [,] 1 ) ) → ( 𝐹 ‘ ( ( 2 · 𝑦 ) − 1 ) ) = ( 𝐹 ‘ ( 1 − ( 1 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) ) ) |
| 162 |
147 161
|
eqtrd |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( ( 1 / 2 ) [,] 1 ) ) → ( ( 𝐺 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 1 − ( 1 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) ) ) |
| 163 |
146 162
|
sylan2 |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝑦 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑦 ≤ ( 1 / 2 ) ) ) → ( ( 𝐺 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 1 − ( 1 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) ) ) |
| 164 |
163
|
anassrs |
⊢ ( ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ∧ ¬ 𝑦 ≤ ( 1 / 2 ) ) → ( ( 𝐺 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 1 − ( 1 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) ) ) |
| 165 |
145 164
|
eqtr4d |
⊢ ( ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ∧ ¬ 𝑦 ≤ ( 1 / 2 ) ) → ( 𝐹 ‘ if ( 𝑦 ≤ ( 1 / 2 ) , ( 1 − ( 1 · ( 2 · 𝑦 ) ) ) , ( 1 − ( 1 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) ) ) = ( ( 𝐺 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 𝑦 ) ) |
| 166 |
142 165
|
pm2.61dan |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ if ( 𝑦 ≤ ( 1 / 2 ) , ( 1 − ( 1 · ( 2 · 𝑦 ) ) ) , ( 1 − ( 1 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) ) ) = ( ( 𝐺 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 𝑦 ) ) |
| 167 |
119 166
|
eqtrd |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( 𝑦 𝐻 0 ) = ( ( 𝐺 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 𝑦 ) ) |
| 168 |
131
|
sseli |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) → 𝑦 ∈ ℝ ) |
| 169 |
168
|
recnd |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) → 𝑦 ∈ ℂ ) |
| 170 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 2 · 𝑦 ) ∈ ℂ ) |
| 171 |
47 169 170
|
sylancr |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) → ( 2 · 𝑦 ) ∈ ℂ ) |
| 172 |
171
|
adantl |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( 2 · 𝑦 ) ∈ ℂ ) |
| 173 |
172
|
mul02d |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( 0 · ( 2 · 𝑦 ) ) = 0 ) |
| 174 |
173
|
oveq2d |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( 1 − ( 0 · ( 2 · 𝑦 ) ) ) = ( 1 − 0 ) ) |
| 175 |
174 54
|
eqtrdi |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( 1 − ( 0 · ( 2 · 𝑦 ) ) ) = 1 ) |
| 176 |
|
subcl |
⊢ ( ( ( 2 · 𝑦 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 2 · 𝑦 ) − 1 ) ∈ ℂ ) |
| 177 |
172 150 176
|
sylancl |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( ( 2 · 𝑦 ) − 1 ) ∈ ℂ ) |
| 178 |
150 177 153
|
sylancr |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ∈ ℂ ) |
| 179 |
178
|
mul02d |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( 0 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) = 0 ) |
| 180 |
179
|
oveq2d |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( 1 − ( 0 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) = ( 1 − 0 ) ) |
| 181 |
180 54
|
eqtrdi |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( 1 − ( 0 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) = 1 ) |
| 182 |
175 181
|
ifeq12d |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → if ( 𝑦 ≤ ( 1 / 2 ) , ( 1 − ( 0 · ( 2 · 𝑦 ) ) ) , ( 1 − ( 0 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) ) = if ( 𝑦 ≤ ( 1 / 2 ) , 1 , 1 ) ) |
| 183 |
|
ifid |
⊢ if ( 𝑦 ≤ ( 1 / 2 ) , 1 , 1 ) = 1 |
| 184 |
182 183
|
eqtrdi |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → if ( 𝑦 ≤ ( 1 / 2 ) , ( 1 − ( 0 · ( 2 · 𝑦 ) ) ) , ( 1 − ( 0 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) ) = 1 ) |
| 185 |
184
|
fveq2d |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ if ( 𝑦 ≤ ( 1 / 2 ) , ( 1 − ( 0 · ( 2 · 𝑦 ) ) ) , ( 1 − ( 0 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) ) ) = ( 𝐹 ‘ 1 ) ) |
| 186 |
|
simpl |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑡 = 1 ) → 𝑠 = 𝑦 ) |
| 187 |
186
|
breq1d |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑡 = 1 ) → ( 𝑠 ≤ ( 1 / 2 ) ↔ 𝑦 ≤ ( 1 / 2 ) ) ) |
| 188 |
|
simpr |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑡 = 1 ) → 𝑡 = 1 ) |
| 189 |
188
|
oveq2d |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑡 = 1 ) → ( 1 − 𝑡 ) = ( 1 − 1 ) ) |
| 190 |
189 13
|
eqtrdi |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑡 = 1 ) → ( 1 − 𝑡 ) = 0 ) |
| 191 |
186
|
oveq2d |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑡 = 1 ) → ( 2 · 𝑠 ) = ( 2 · 𝑦 ) ) |
| 192 |
190 191
|
oveq12d |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑡 = 1 ) → ( ( 1 − 𝑡 ) · ( 2 · 𝑠 ) ) = ( 0 · ( 2 · 𝑦 ) ) ) |
| 193 |
192
|
oveq2d |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑡 = 1 ) → ( 1 − ( ( 1 − 𝑡 ) · ( 2 · 𝑠 ) ) ) = ( 1 − ( 0 · ( 2 · 𝑦 ) ) ) ) |
| 194 |
191
|
oveq1d |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑡 = 1 ) → ( ( 2 · 𝑠 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) |
| 195 |
194
|
oveq2d |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑡 = 1 ) → ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) = ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) |
| 196 |
190 195
|
oveq12d |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑡 = 1 ) → ( ( 1 − 𝑡 ) · ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) = ( 0 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) |
| 197 |
196
|
oveq2d |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑡 = 1 ) → ( 1 − ( ( 1 − 𝑡 ) · ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) ) = ( 1 − ( 0 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) ) |
| 198 |
187 193 197
|
ifbieq12d |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑡 = 1 ) → if ( 𝑠 ≤ ( 1 / 2 ) , ( 1 − ( ( 1 − 𝑡 ) · ( 2 · 𝑠 ) ) ) , ( 1 − ( ( 1 − 𝑡 ) · ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) ) ) = if ( 𝑦 ≤ ( 1 / 2 ) , ( 1 − ( 0 · ( 2 · 𝑦 ) ) ) , ( 1 − ( 0 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) ) ) |
| 199 |
198
|
fveq2d |
⊢ ( ( 𝑠 = 𝑦 ∧ 𝑡 = 1 ) → ( 𝐹 ‘ if ( 𝑠 ≤ ( 1 / 2 ) , ( 1 − ( ( 1 − 𝑡 ) · ( 2 · 𝑠 ) ) ) , ( 1 − ( ( 1 − 𝑡 ) · ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) ) ) ) = ( 𝐹 ‘ if ( 𝑦 ≤ ( 1 / 2 ) , ( 1 − ( 0 · ( 2 · 𝑦 ) ) ) , ( 1 − ( 0 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) ) ) ) |
| 200 |
|
fvex |
⊢ ( 𝐹 ‘ if ( 𝑦 ≤ ( 1 / 2 ) , ( 1 − ( 0 · ( 2 · 𝑦 ) ) ) , ( 1 − ( 0 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) ) ) ∈ V |
| 201 |
199 3 200
|
ovmpoa |
⊢ ( ( 𝑦 ∈ ( 0 [,] 1 ) ∧ 1 ∈ ( 0 [,] 1 ) ) → ( 𝑦 𝐻 1 ) = ( 𝐹 ‘ if ( 𝑦 ≤ ( 1 / 2 ) , ( 1 − ( 0 · ( 2 · 𝑦 ) ) ) , ( 1 − ( 0 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) ) ) ) |
| 202 |
101 11 201
|
sylancl |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( 𝑦 𝐻 1 ) = ( 𝐹 ‘ if ( 𝑦 ≤ ( 1 / 2 ) , ( 1 − ( 0 · ( 2 · 𝑦 ) ) ) , ( 1 − ( 0 · ( 1 − ( ( 2 · 𝑦 ) − 1 ) ) ) ) ) ) ) |
| 203 |
2
|
fveq1i |
⊢ ( 𝑃 ‘ 𝑦 ) = ( ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 1 ) } ) ‘ 𝑦 ) |
| 204 |
|
fvex |
⊢ ( 𝐹 ‘ 1 ) ∈ V |
| 205 |
204
|
fvconst2 |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) → ( ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 1 ) } ) ‘ 𝑦 ) = ( 𝐹 ‘ 1 ) ) |
| 206 |
205
|
adantl |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 1 ) } ) ‘ 𝑦 ) = ( 𝐹 ‘ 1 ) ) |
| 207 |
203 206
|
eqtrid |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( 𝑃 ‘ 𝑦 ) = ( 𝐹 ‘ 1 ) ) |
| 208 |
185 202 207
|
3eqtr4d |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( 𝑦 𝐻 1 ) = ( 𝑃 ‘ 𝑦 ) ) |
| 209 |
|
simpl |
⊢ ( ( 𝑠 = 0 ∧ 𝑡 = 𝑦 ) → 𝑠 = 0 ) |
| 210 |
209 38
|
eqbrtrdi |
⊢ ( ( 𝑠 = 0 ∧ 𝑡 = 𝑦 ) → 𝑠 ≤ ( 1 / 2 ) ) |
| 211 |
210
|
iftrued |
⊢ ( ( 𝑠 = 0 ∧ 𝑡 = 𝑦 ) → if ( 𝑠 ≤ ( 1 / 2 ) , ( 1 − ( ( 1 − 𝑡 ) · ( 2 · 𝑠 ) ) ) , ( 1 − ( ( 1 − 𝑡 ) · ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) ) ) = ( 1 − ( ( 1 − 𝑡 ) · ( 2 · 𝑠 ) ) ) ) |
| 212 |
|
simpr |
⊢ ( ( 𝑠 = 0 ∧ 𝑡 = 𝑦 ) → 𝑡 = 𝑦 ) |
| 213 |
212
|
oveq2d |
⊢ ( ( 𝑠 = 0 ∧ 𝑡 = 𝑦 ) → ( 1 − 𝑡 ) = ( 1 − 𝑦 ) ) |
| 214 |
209
|
oveq2d |
⊢ ( ( 𝑠 = 0 ∧ 𝑡 = 𝑦 ) → ( 2 · 𝑠 ) = ( 2 · 0 ) ) |
| 215 |
|
2t0e0 |
⊢ ( 2 · 0 ) = 0 |
| 216 |
214 215
|
eqtrdi |
⊢ ( ( 𝑠 = 0 ∧ 𝑡 = 𝑦 ) → ( 2 · 𝑠 ) = 0 ) |
| 217 |
213 216
|
oveq12d |
⊢ ( ( 𝑠 = 0 ∧ 𝑡 = 𝑦 ) → ( ( 1 − 𝑡 ) · ( 2 · 𝑠 ) ) = ( ( 1 − 𝑦 ) · 0 ) ) |
| 218 |
217
|
oveq2d |
⊢ ( ( 𝑠 = 0 ∧ 𝑡 = 𝑦 ) → ( 1 − ( ( 1 − 𝑡 ) · ( 2 · 𝑠 ) ) ) = ( 1 − ( ( 1 − 𝑦 ) · 0 ) ) ) |
| 219 |
211 218
|
eqtrd |
⊢ ( ( 𝑠 = 0 ∧ 𝑡 = 𝑦 ) → if ( 𝑠 ≤ ( 1 / 2 ) , ( 1 − ( ( 1 − 𝑡 ) · ( 2 · 𝑠 ) ) ) , ( 1 − ( ( 1 − 𝑡 ) · ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) ) ) = ( 1 − ( ( 1 − 𝑦 ) · 0 ) ) ) |
| 220 |
219
|
fveq2d |
⊢ ( ( 𝑠 = 0 ∧ 𝑡 = 𝑦 ) → ( 𝐹 ‘ if ( 𝑠 ≤ ( 1 / 2 ) , ( 1 − ( ( 1 − 𝑡 ) · ( 2 · 𝑠 ) ) ) , ( 1 − ( ( 1 − 𝑡 ) · ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) ) ) ) = ( 𝐹 ‘ ( 1 − ( ( 1 − 𝑦 ) · 0 ) ) ) ) |
| 221 |
|
fvex |
⊢ ( 𝐹 ‘ ( 1 − ( ( 1 − 𝑦 ) · 0 ) ) ) ∈ V |
| 222 |
220 3 221
|
ovmpoa |
⊢ ( ( 0 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( 0 𝐻 𝑦 ) = ( 𝐹 ‘ ( 1 − ( ( 1 − 𝑦 ) · 0 ) ) ) ) |
| 223 |
102 222
|
mpan |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) → ( 0 𝐻 𝑦 ) = ( 𝐹 ‘ ( 1 − ( ( 1 − 𝑦 ) · 0 ) ) ) ) |
| 224 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 1 − 𝑦 ) ∈ ℂ ) |
| 225 |
150 169 224
|
sylancr |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) → ( 1 − 𝑦 ) ∈ ℂ ) |
| 226 |
225
|
mul01d |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) → ( ( 1 − 𝑦 ) · 0 ) = 0 ) |
| 227 |
226
|
oveq2d |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) → ( 1 − ( ( 1 − 𝑦 ) · 0 ) ) = ( 1 − 0 ) ) |
| 228 |
227 54
|
eqtrdi |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) → ( 1 − ( ( 1 − 𝑦 ) · 0 ) ) = 1 ) |
| 229 |
228
|
fveq2d |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ ( 1 − ( ( 1 − 𝑦 ) · 0 ) ) ) = ( 𝐹 ‘ 1 ) ) |
| 230 |
223 229
|
eqtrd |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) → ( 0 𝐻 𝑦 ) = ( 𝐹 ‘ 1 ) ) |
| 231 |
10 8
|
pco0 |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( ( 𝐺 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 0 ) = ( 𝐺 ‘ 0 ) ) |
| 232 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 1 − 𝑥 ) = ( 1 − 0 ) ) |
| 233 |
232 54
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( 1 − 𝑥 ) = 1 ) |
| 234 |
233
|
fveq2d |
⊢ ( 𝑥 = 0 → ( 𝐹 ‘ ( 1 − 𝑥 ) ) = ( 𝐹 ‘ 1 ) ) |
| 235 |
234 1 204
|
fvmpt |
⊢ ( 0 ∈ ( 0 [,] 1 ) → ( 𝐺 ‘ 0 ) = ( 𝐹 ‘ 1 ) ) |
| 236 |
102 235
|
ax-mp |
⊢ ( 𝐺 ‘ 0 ) = ( 𝐹 ‘ 1 ) |
| 237 |
231 236
|
eqtr2di |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝐹 ‘ 1 ) = ( ( 𝐺 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 0 ) ) |
| 238 |
230 237
|
sylan9eqr |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( 0 𝐻 𝑦 ) = ( ( 𝐺 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 0 ) ) |
| 239 |
37 39
|
ltnlei |
⊢ ( ( 1 / 2 ) < 1 ↔ ¬ 1 ≤ ( 1 / 2 ) ) |
| 240 |
40 239
|
mpbi |
⊢ ¬ 1 ≤ ( 1 / 2 ) |
| 241 |
|
simpl |
⊢ ( ( 𝑠 = 1 ∧ 𝑡 = 𝑦 ) → 𝑠 = 1 ) |
| 242 |
241
|
breq1d |
⊢ ( ( 𝑠 = 1 ∧ 𝑡 = 𝑦 ) → ( 𝑠 ≤ ( 1 / 2 ) ↔ 1 ≤ ( 1 / 2 ) ) ) |
| 243 |
240 242
|
mtbiri |
⊢ ( ( 𝑠 = 1 ∧ 𝑡 = 𝑦 ) → ¬ 𝑠 ≤ ( 1 / 2 ) ) |
| 244 |
243
|
iffalsed |
⊢ ( ( 𝑠 = 1 ∧ 𝑡 = 𝑦 ) → if ( 𝑠 ≤ ( 1 / 2 ) , ( 1 − ( ( 1 − 𝑡 ) · ( 2 · 𝑠 ) ) ) , ( 1 − ( ( 1 − 𝑡 ) · ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) ) ) = ( 1 − ( ( 1 − 𝑡 ) · ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) ) ) |
| 245 |
|
simpr |
⊢ ( ( 𝑠 = 1 ∧ 𝑡 = 𝑦 ) → 𝑡 = 𝑦 ) |
| 246 |
245
|
oveq2d |
⊢ ( ( 𝑠 = 1 ∧ 𝑡 = 𝑦 ) → ( 1 − 𝑡 ) = ( 1 − 𝑦 ) ) |
| 247 |
241
|
oveq2d |
⊢ ( ( 𝑠 = 1 ∧ 𝑡 = 𝑦 ) → ( 2 · 𝑠 ) = ( 2 · 1 ) ) |
| 248 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
| 249 |
247 248
|
eqtrdi |
⊢ ( ( 𝑠 = 1 ∧ 𝑡 = 𝑦 ) → ( 2 · 𝑠 ) = 2 ) |
| 250 |
249
|
oveq1d |
⊢ ( ( 𝑠 = 1 ∧ 𝑡 = 𝑦 ) → ( ( 2 · 𝑠 ) − 1 ) = ( 2 − 1 ) ) |
| 251 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
| 252 |
250 251
|
eqtrdi |
⊢ ( ( 𝑠 = 1 ∧ 𝑡 = 𝑦 ) → ( ( 2 · 𝑠 ) − 1 ) = 1 ) |
| 253 |
252
|
oveq2d |
⊢ ( ( 𝑠 = 1 ∧ 𝑡 = 𝑦 ) → ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) = ( 1 − 1 ) ) |
| 254 |
253 13
|
eqtrdi |
⊢ ( ( 𝑠 = 1 ∧ 𝑡 = 𝑦 ) → ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) = 0 ) |
| 255 |
246 254
|
oveq12d |
⊢ ( ( 𝑠 = 1 ∧ 𝑡 = 𝑦 ) → ( ( 1 − 𝑡 ) · ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) = ( ( 1 − 𝑦 ) · 0 ) ) |
| 256 |
255
|
oveq2d |
⊢ ( ( 𝑠 = 1 ∧ 𝑡 = 𝑦 ) → ( 1 − ( ( 1 − 𝑡 ) · ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) ) = ( 1 − ( ( 1 − 𝑦 ) · 0 ) ) ) |
| 257 |
244 256
|
eqtrd |
⊢ ( ( 𝑠 = 1 ∧ 𝑡 = 𝑦 ) → if ( 𝑠 ≤ ( 1 / 2 ) , ( 1 − ( ( 1 − 𝑡 ) · ( 2 · 𝑠 ) ) ) , ( 1 − ( ( 1 − 𝑡 ) · ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) ) ) = ( 1 − ( ( 1 − 𝑦 ) · 0 ) ) ) |
| 258 |
257
|
fveq2d |
⊢ ( ( 𝑠 = 1 ∧ 𝑡 = 𝑦 ) → ( 𝐹 ‘ if ( 𝑠 ≤ ( 1 / 2 ) , ( 1 − ( ( 1 − 𝑡 ) · ( 2 · 𝑠 ) ) ) , ( 1 − ( ( 1 − 𝑡 ) · ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) ) ) ) = ( 𝐹 ‘ ( 1 − ( ( 1 − 𝑦 ) · 0 ) ) ) ) |
| 259 |
258 3 221
|
ovmpoa |
⊢ ( ( 1 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( 1 𝐻 𝑦 ) = ( 𝐹 ‘ ( 1 − ( ( 1 − 𝑦 ) · 0 ) ) ) ) |
| 260 |
11 259
|
mpan |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) → ( 1 𝐻 𝑦 ) = ( 𝐹 ‘ ( 1 − ( ( 1 − 𝑦 ) · 0 ) ) ) ) |
| 261 |
260 229
|
eqtrd |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) → ( 1 𝐻 𝑦 ) = ( 𝐹 ‘ 1 ) ) |
| 262 |
10 8
|
pco1 |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( ( 𝐺 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
| 263 |
262
|
eqcomd |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝐹 ‘ 1 ) = ( ( 𝐺 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 1 ) ) |
| 264 |
261 263
|
sylan9eqr |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( 1 𝐻 𝑦 ) = ( ( 𝐺 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 1 ) ) |
| 265 |
19 30 100 167 208 238 264
|
isphtpy2d |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → 𝐻 ∈ ( ( 𝐺 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ( PHtpy ‘ 𝐽 ) 𝑃 ) ) |
| 266 |
265
|
ne0d |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( ( 𝐺 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ( PHtpy ‘ 𝐽 ) 𝑃 ) ≠ ∅ ) |
| 267 |
|
isphtpc |
⊢ ( ( 𝐺 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ( ≃ph ‘ 𝐽 ) 𝑃 ↔ ( ( 𝐺 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ∈ ( II Cn 𝐽 ) ∧ 𝑃 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝐺 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ( PHtpy ‘ 𝐽 ) 𝑃 ) ≠ ∅ ) ) |
| 268 |
19 30 266 267
|
syl3anbrc |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝐺 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ( ≃ph ‘ 𝐽 ) 𝑃 ) |
| 269 |
265 268
|
jca |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝐻 ∈ ( ( 𝐺 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ( PHtpy ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐺 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ( ≃ph ‘ 𝐽 ) 𝑃 ) ) |