Metamath Proof Explorer


Theorem pcorev

Description: Concatenation with the reverse path. (Contributed by Jeff Madsen, 19-Jun-2010) (Revised by Mario Carneiro, 20-Dec-2013)

Ref Expression
Hypotheses pcorev.1 𝐺 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 1 − 𝑥 ) ) )
pcorev.2 𝑃 = ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 1 ) } )
Assertion pcorev ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝐺 ( *𝑝𝐽 ) 𝐹 ) ( ≃ph𝐽 ) 𝑃 )

Proof

Step Hyp Ref Expression
1 pcorev.1 𝐺 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 1 − 𝑥 ) ) )
2 pcorev.2 𝑃 = ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 1 ) } )
3 eqid ( 𝑠 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ if ( 𝑠 ≤ ( 1 / 2 ) , ( 1 − ( ( 1 − 𝑡 ) · ( 2 · 𝑠 ) ) ) , ( 1 − ( ( 1 − 𝑡 ) · ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) ) ) ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ if ( 𝑠 ≤ ( 1 / 2 ) , ( 1 − ( ( 1 − 𝑡 ) · ( 2 · 𝑠 ) ) ) , ( 1 − ( ( 1 − 𝑡 ) · ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) ) ) ) )
4 1 2 3 pcorevlem ( 𝐹 ∈ ( II Cn 𝐽 ) → ( ( 𝑠 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ if ( 𝑠 ≤ ( 1 / 2 ) , ( 1 − ( ( 1 − 𝑡 ) · ( 2 · 𝑠 ) ) ) , ( 1 − ( ( 1 − 𝑡 ) · ( 1 − ( ( 2 · 𝑠 ) − 1 ) ) ) ) ) ) ) ∈ ( ( 𝐺 ( *𝑝𝐽 ) 𝐹 ) ( PHtpy ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐺 ( *𝑝𝐽 ) 𝐹 ) ( ≃ph𝐽 ) 𝑃 ) )
5 4 simprd ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝐺 ( *𝑝𝐽 ) 𝐹 ) ( ≃ph𝐽 ) 𝑃 )