Step |
Hyp |
Ref |
Expression |
1 |
|
pcorev2.1 |
⊢ 𝐺 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 1 − 𝑥 ) ) ) |
2 |
|
pcorev2.2 |
⊢ 𝑃 = ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) |
3 |
1
|
pcorevcl |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝐺 ∈ ( II Cn 𝐽 ) ∧ ( 𝐺 ‘ 0 ) = ( 𝐹 ‘ 1 ) ∧ ( 𝐺 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
4 |
3
|
simp1d |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → 𝐺 ∈ ( II Cn 𝐽 ) ) |
5 |
|
eqid |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝐺 ‘ ( 1 − 𝑦 ) ) ) = ( 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝐺 ‘ ( 1 − 𝑦 ) ) ) |
6 |
|
eqid |
⊢ ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 1 ) } ) = ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 1 ) } ) |
7 |
5 6
|
pcorev |
⊢ ( 𝐺 ∈ ( II Cn 𝐽 ) → ( ( 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝐺 ‘ ( 1 − 𝑦 ) ) ) ( *𝑝 ‘ 𝐽 ) 𝐺 ) ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 1 ) } ) ) |
8 |
4 7
|
syl |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( ( 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝐺 ‘ ( 1 − 𝑦 ) ) ) ( *𝑝 ‘ 𝐽 ) 𝐺 ) ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 1 ) } ) ) |
9 |
|
iirev |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) → ( 1 − 𝑦 ) ∈ ( 0 [,] 1 ) ) |
10 |
|
oveq2 |
⊢ ( 𝑥 = ( 1 − 𝑦 ) → ( 1 − 𝑥 ) = ( 1 − ( 1 − 𝑦 ) ) ) |
11 |
10
|
fveq2d |
⊢ ( 𝑥 = ( 1 − 𝑦 ) → ( 𝐹 ‘ ( 1 − 𝑥 ) ) = ( 𝐹 ‘ ( 1 − ( 1 − 𝑦 ) ) ) ) |
12 |
|
fvex |
⊢ ( 𝐹 ‘ ( 1 − ( 1 − 𝑦 ) ) ) ∈ V |
13 |
11 1 12
|
fvmpt |
⊢ ( ( 1 − 𝑦 ) ∈ ( 0 [,] 1 ) → ( 𝐺 ‘ ( 1 − 𝑦 ) ) = ( 𝐹 ‘ ( 1 − ( 1 − 𝑦 ) ) ) ) |
14 |
9 13
|
syl |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) → ( 𝐺 ‘ ( 1 − 𝑦 ) ) = ( 𝐹 ‘ ( 1 − ( 1 − 𝑦 ) ) ) ) |
15 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
16 |
|
unitssre |
⊢ ( 0 [,] 1 ) ⊆ ℝ |
17 |
16
|
sseli |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) → 𝑦 ∈ ℝ ) |
18 |
17
|
recnd |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) → 𝑦 ∈ ℂ ) |
19 |
|
nncan |
⊢ ( ( 1 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 1 − ( 1 − 𝑦 ) ) = 𝑦 ) |
20 |
15 18 19
|
sylancr |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) → ( 1 − ( 1 − 𝑦 ) ) = 𝑦 ) |
21 |
20
|
fveq2d |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ ( 1 − ( 1 − 𝑦 ) ) ) = ( 𝐹 ‘ 𝑦 ) ) |
22 |
14 21
|
eqtrd |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) → ( 𝐺 ‘ ( 1 − 𝑦 ) ) = ( 𝐹 ‘ 𝑦 ) ) |
23 |
22
|
mpteq2ia |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝐺 ‘ ( 1 − 𝑦 ) ) ) = ( 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ 𝑦 ) ) |
24 |
|
iiuni |
⊢ ( 0 [,] 1 ) = ∪ II |
25 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
26 |
24 25
|
cnf |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → 𝐹 : ( 0 [,] 1 ) ⟶ ∪ 𝐽 ) |
27 |
26
|
feqmptd |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → 𝐹 = ( 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
28 |
23 27
|
eqtr4id |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝐺 ‘ ( 1 − 𝑦 ) ) ) = 𝐹 ) |
29 |
28
|
oveq1d |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( ( 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝐺 ‘ ( 1 − 𝑦 ) ) ) ( *𝑝 ‘ 𝐽 ) 𝐺 ) = ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ) |
30 |
3
|
simp3d |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝐺 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) |
31 |
30
|
sneqd |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → { ( 𝐺 ‘ 1 ) } = { ( 𝐹 ‘ 0 ) } ) |
32 |
31
|
xpeq2d |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 1 ) } ) = ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ) |
33 |
32 2
|
eqtr4di |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 1 ) } ) = 𝑃 ) |
34 |
8 29 33
|
3brtr3d |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ( ≃ph ‘ 𝐽 ) 𝑃 ) |