Metamath Proof Explorer


Theorem pcorev2

Description: Concatenation with the reverse path. (Contributed by Mario Carneiro, 12-Feb-2015)

Ref Expression
Hypotheses pcorev2.1 𝐺 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 1 − 𝑥 ) ) )
pcorev2.2 𝑃 = ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } )
Assertion pcorev2 ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝐹 ( *𝑝𝐽 ) 𝐺 ) ( ≃ph𝐽 ) 𝑃 )

Proof

Step Hyp Ref Expression
1 pcorev2.1 𝐺 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 1 − 𝑥 ) ) )
2 pcorev2.2 𝑃 = ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } )
3 1 pcorevcl ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝐺 ∈ ( II Cn 𝐽 ) ∧ ( 𝐺 ‘ 0 ) = ( 𝐹 ‘ 1 ) ∧ ( 𝐺 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) )
4 3 simp1d ( 𝐹 ∈ ( II Cn 𝐽 ) → 𝐺 ∈ ( II Cn 𝐽 ) )
5 eqid ( 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝐺 ‘ ( 1 − 𝑦 ) ) ) = ( 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝐺 ‘ ( 1 − 𝑦 ) ) )
6 eqid ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 1 ) } ) = ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 1 ) } )
7 5 6 pcorev ( 𝐺 ∈ ( II Cn 𝐽 ) → ( ( 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝐺 ‘ ( 1 − 𝑦 ) ) ) ( *𝑝𝐽 ) 𝐺 ) ( ≃ph𝐽 ) ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 1 ) } ) )
8 4 7 syl ( 𝐹 ∈ ( II Cn 𝐽 ) → ( ( 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝐺 ‘ ( 1 − 𝑦 ) ) ) ( *𝑝𝐽 ) 𝐺 ) ( ≃ph𝐽 ) ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 1 ) } ) )
9 iirev ( 𝑦 ∈ ( 0 [,] 1 ) → ( 1 − 𝑦 ) ∈ ( 0 [,] 1 ) )
10 oveq2 ( 𝑥 = ( 1 − 𝑦 ) → ( 1 − 𝑥 ) = ( 1 − ( 1 − 𝑦 ) ) )
11 10 fveq2d ( 𝑥 = ( 1 − 𝑦 ) → ( 𝐹 ‘ ( 1 − 𝑥 ) ) = ( 𝐹 ‘ ( 1 − ( 1 − 𝑦 ) ) ) )
12 fvex ( 𝐹 ‘ ( 1 − ( 1 − 𝑦 ) ) ) ∈ V
13 11 1 12 fvmpt ( ( 1 − 𝑦 ) ∈ ( 0 [,] 1 ) → ( 𝐺 ‘ ( 1 − 𝑦 ) ) = ( 𝐹 ‘ ( 1 − ( 1 − 𝑦 ) ) ) )
14 9 13 syl ( 𝑦 ∈ ( 0 [,] 1 ) → ( 𝐺 ‘ ( 1 − 𝑦 ) ) = ( 𝐹 ‘ ( 1 − ( 1 − 𝑦 ) ) ) )
15 ax-1cn 1 ∈ ℂ
16 unitssre ( 0 [,] 1 ) ⊆ ℝ
17 16 sseli ( 𝑦 ∈ ( 0 [,] 1 ) → 𝑦 ∈ ℝ )
18 17 recnd ( 𝑦 ∈ ( 0 [,] 1 ) → 𝑦 ∈ ℂ )
19 nncan ( ( 1 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 1 − ( 1 − 𝑦 ) ) = 𝑦 )
20 15 18 19 sylancr ( 𝑦 ∈ ( 0 [,] 1 ) → ( 1 − ( 1 − 𝑦 ) ) = 𝑦 )
21 20 fveq2d ( 𝑦 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ ( 1 − ( 1 − 𝑦 ) ) ) = ( 𝐹𝑦 ) )
22 14 21 eqtrd ( 𝑦 ∈ ( 0 [,] 1 ) → ( 𝐺 ‘ ( 1 − 𝑦 ) ) = ( 𝐹𝑦 ) )
23 22 mpteq2ia ( 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝐺 ‘ ( 1 − 𝑦 ) ) ) = ( 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝐹𝑦 ) )
24 iiuni ( 0 [,] 1 ) = II
25 eqid 𝐽 = 𝐽
26 24 25 cnf ( 𝐹 ∈ ( II Cn 𝐽 ) → 𝐹 : ( 0 [,] 1 ) ⟶ 𝐽 )
27 26 feqmptd ( 𝐹 ∈ ( II Cn 𝐽 ) → 𝐹 = ( 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝐹𝑦 ) ) )
28 23 27 eqtr4id ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝐺 ‘ ( 1 − 𝑦 ) ) ) = 𝐹 )
29 28 oveq1d ( 𝐹 ∈ ( II Cn 𝐽 ) → ( ( 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝐺 ‘ ( 1 − 𝑦 ) ) ) ( *𝑝𝐽 ) 𝐺 ) = ( 𝐹 ( *𝑝𝐽 ) 𝐺 ) )
30 3 simp3d ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝐺 ‘ 1 ) = ( 𝐹 ‘ 0 ) )
31 30 sneqd ( 𝐹 ∈ ( II Cn 𝐽 ) → { ( 𝐺 ‘ 1 ) } = { ( 𝐹 ‘ 0 ) } )
32 31 xpeq2d ( 𝐹 ∈ ( II Cn 𝐽 ) → ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 1 ) } ) = ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) )
33 32 2 eqtr4di ( 𝐹 ∈ ( II Cn 𝐽 ) → ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 1 ) } ) = 𝑃 )
34 8 29 33 3brtr3d ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝐹 ( *𝑝𝐽 ) 𝐺 ) ( ≃ph𝐽 ) 𝑃 )