Step |
Hyp |
Ref |
Expression |
1 |
|
pcorev2.1 |
|- G = ( x e. ( 0 [,] 1 ) |-> ( F ` ( 1 - x ) ) ) |
2 |
|
pcorev2.2 |
|- P = ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) |
3 |
1
|
pcorevcl |
|- ( F e. ( II Cn J ) -> ( G e. ( II Cn J ) /\ ( G ` 0 ) = ( F ` 1 ) /\ ( G ` 1 ) = ( F ` 0 ) ) ) |
4 |
3
|
simp1d |
|- ( F e. ( II Cn J ) -> G e. ( II Cn J ) ) |
5 |
|
eqid |
|- ( y e. ( 0 [,] 1 ) |-> ( G ` ( 1 - y ) ) ) = ( y e. ( 0 [,] 1 ) |-> ( G ` ( 1 - y ) ) ) |
6 |
|
eqid |
|- ( ( 0 [,] 1 ) X. { ( G ` 1 ) } ) = ( ( 0 [,] 1 ) X. { ( G ` 1 ) } ) |
7 |
5 6
|
pcorev |
|- ( G e. ( II Cn J ) -> ( ( y e. ( 0 [,] 1 ) |-> ( G ` ( 1 - y ) ) ) ( *p ` J ) G ) ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( G ` 1 ) } ) ) |
8 |
4 7
|
syl |
|- ( F e. ( II Cn J ) -> ( ( y e. ( 0 [,] 1 ) |-> ( G ` ( 1 - y ) ) ) ( *p ` J ) G ) ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( G ` 1 ) } ) ) |
9 |
|
iirev |
|- ( y e. ( 0 [,] 1 ) -> ( 1 - y ) e. ( 0 [,] 1 ) ) |
10 |
|
oveq2 |
|- ( x = ( 1 - y ) -> ( 1 - x ) = ( 1 - ( 1 - y ) ) ) |
11 |
10
|
fveq2d |
|- ( x = ( 1 - y ) -> ( F ` ( 1 - x ) ) = ( F ` ( 1 - ( 1 - y ) ) ) ) |
12 |
|
fvex |
|- ( F ` ( 1 - ( 1 - y ) ) ) e. _V |
13 |
11 1 12
|
fvmpt |
|- ( ( 1 - y ) e. ( 0 [,] 1 ) -> ( G ` ( 1 - y ) ) = ( F ` ( 1 - ( 1 - y ) ) ) ) |
14 |
9 13
|
syl |
|- ( y e. ( 0 [,] 1 ) -> ( G ` ( 1 - y ) ) = ( F ` ( 1 - ( 1 - y ) ) ) ) |
15 |
|
ax-1cn |
|- 1 e. CC |
16 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
17 |
16
|
sseli |
|- ( y e. ( 0 [,] 1 ) -> y e. RR ) |
18 |
17
|
recnd |
|- ( y e. ( 0 [,] 1 ) -> y e. CC ) |
19 |
|
nncan |
|- ( ( 1 e. CC /\ y e. CC ) -> ( 1 - ( 1 - y ) ) = y ) |
20 |
15 18 19
|
sylancr |
|- ( y e. ( 0 [,] 1 ) -> ( 1 - ( 1 - y ) ) = y ) |
21 |
20
|
fveq2d |
|- ( y e. ( 0 [,] 1 ) -> ( F ` ( 1 - ( 1 - y ) ) ) = ( F ` y ) ) |
22 |
14 21
|
eqtrd |
|- ( y e. ( 0 [,] 1 ) -> ( G ` ( 1 - y ) ) = ( F ` y ) ) |
23 |
22
|
mpteq2ia |
|- ( y e. ( 0 [,] 1 ) |-> ( G ` ( 1 - y ) ) ) = ( y e. ( 0 [,] 1 ) |-> ( F ` y ) ) |
24 |
|
iiuni |
|- ( 0 [,] 1 ) = U. II |
25 |
|
eqid |
|- U. J = U. J |
26 |
24 25
|
cnf |
|- ( F e. ( II Cn J ) -> F : ( 0 [,] 1 ) --> U. J ) |
27 |
26
|
feqmptd |
|- ( F e. ( II Cn J ) -> F = ( y e. ( 0 [,] 1 ) |-> ( F ` y ) ) ) |
28 |
23 27
|
eqtr4id |
|- ( F e. ( II Cn J ) -> ( y e. ( 0 [,] 1 ) |-> ( G ` ( 1 - y ) ) ) = F ) |
29 |
28
|
oveq1d |
|- ( F e. ( II Cn J ) -> ( ( y e. ( 0 [,] 1 ) |-> ( G ` ( 1 - y ) ) ) ( *p ` J ) G ) = ( F ( *p ` J ) G ) ) |
30 |
3
|
simp3d |
|- ( F e. ( II Cn J ) -> ( G ` 1 ) = ( F ` 0 ) ) |
31 |
30
|
sneqd |
|- ( F e. ( II Cn J ) -> { ( G ` 1 ) } = { ( F ` 0 ) } ) |
32 |
31
|
xpeq2d |
|- ( F e. ( II Cn J ) -> ( ( 0 [,] 1 ) X. { ( G ` 1 ) } ) = ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) |
33 |
32 2
|
eqtr4di |
|- ( F e. ( II Cn J ) -> ( ( 0 [,] 1 ) X. { ( G ` 1 ) } ) = P ) |
34 |
8 29 33
|
3brtr3d |
|- ( F e. ( II Cn J ) -> ( F ( *p ` J ) G ) ( ~=ph ` J ) P ) |