Step |
Hyp |
Ref |
Expression |
1 |
|
pcophtb.h |
|- H = ( x e. ( 0 [,] 1 ) |-> ( G ` ( 1 - x ) ) ) |
2 |
|
pcophtb.p |
|- P = ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) |
3 |
|
pcophtb.f |
|- ( ph -> F e. ( II Cn J ) ) |
4 |
|
pcophtb.g |
|- ( ph -> G e. ( II Cn J ) ) |
5 |
|
pcophtb.0 |
|- ( ph -> ( F ` 0 ) = ( G ` 0 ) ) |
6 |
|
pcophtb.1 |
|- ( ph -> ( F ` 1 ) = ( G ` 1 ) ) |
7 |
|
phtpcer |
|- ( ~=ph ` J ) Er ( II Cn J ) |
8 |
7
|
a1i |
|- ( ( ph /\ ( F ( *p ` J ) H ) ( ~=ph ` J ) P ) -> ( ~=ph ` J ) Er ( II Cn J ) ) |
9 |
1
|
pcorevcl |
|- ( G e. ( II Cn J ) -> ( H e. ( II Cn J ) /\ ( H ` 0 ) = ( G ` 1 ) /\ ( H ` 1 ) = ( G ` 0 ) ) ) |
10 |
4 9
|
syl |
|- ( ph -> ( H e. ( II Cn J ) /\ ( H ` 0 ) = ( G ` 1 ) /\ ( H ` 1 ) = ( G ` 0 ) ) ) |
11 |
10
|
simp2d |
|- ( ph -> ( H ` 0 ) = ( G ` 1 ) ) |
12 |
6 11
|
eqtr4d |
|- ( ph -> ( F ` 1 ) = ( H ` 0 ) ) |
13 |
10
|
simp1d |
|- ( ph -> H e. ( II Cn J ) ) |
14 |
13 4
|
pco0 |
|- ( ph -> ( ( H ( *p ` J ) G ) ` 0 ) = ( H ` 0 ) ) |
15 |
12 14
|
eqtr4d |
|- ( ph -> ( F ` 1 ) = ( ( H ( *p ` J ) G ) ` 0 ) ) |
16 |
15
|
adantr |
|- ( ( ph /\ ( F ( *p ` J ) H ) ( ~=ph ` J ) P ) -> ( F ` 1 ) = ( ( H ( *p ` J ) G ) ` 0 ) ) |
17 |
3
|
adantr |
|- ( ( ph /\ ( F ( *p ` J ) H ) ( ~=ph ` J ) P ) -> F e. ( II Cn J ) ) |
18 |
8 17
|
erref |
|- ( ( ph /\ ( F ( *p ` J ) H ) ( ~=ph ` J ) P ) -> F ( ~=ph ` J ) F ) |
19 |
|
eqid |
|- ( ( 0 [,] 1 ) X. { ( G ` 1 ) } ) = ( ( 0 [,] 1 ) X. { ( G ` 1 ) } ) |
20 |
1 19
|
pcorev |
|- ( G e. ( II Cn J ) -> ( H ( *p ` J ) G ) ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( G ` 1 ) } ) ) |
21 |
4 20
|
syl |
|- ( ph -> ( H ( *p ` J ) G ) ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( G ` 1 ) } ) ) |
22 |
21
|
adantr |
|- ( ( ph /\ ( F ( *p ` J ) H ) ( ~=ph ` J ) P ) -> ( H ( *p ` J ) G ) ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( G ` 1 ) } ) ) |
23 |
16 18 22
|
pcohtpy |
|- ( ( ph /\ ( F ( *p ` J ) H ) ( ~=ph ` J ) P ) -> ( F ( *p ` J ) ( H ( *p ` J ) G ) ) ( ~=ph ` J ) ( F ( *p ` J ) ( ( 0 [,] 1 ) X. { ( G ` 1 ) } ) ) ) |
24 |
6
|
adantr |
|- ( ( ph /\ ( F ( *p ` J ) H ) ( ~=ph ` J ) P ) -> ( F ` 1 ) = ( G ` 1 ) ) |
25 |
19
|
pcopt2 |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = ( G ` 1 ) ) -> ( F ( *p ` J ) ( ( 0 [,] 1 ) X. { ( G ` 1 ) } ) ) ( ~=ph ` J ) F ) |
26 |
17 24 25
|
syl2anc |
|- ( ( ph /\ ( F ( *p ` J ) H ) ( ~=ph ` J ) P ) -> ( F ( *p ` J ) ( ( 0 [,] 1 ) X. { ( G ` 1 ) } ) ) ( ~=ph ` J ) F ) |
27 |
8 23 26
|
ertrd |
|- ( ( ph /\ ( F ( *p ` J ) H ) ( ~=ph ` J ) P ) -> ( F ( *p ` J ) ( H ( *p ` J ) G ) ) ( ~=ph ` J ) F ) |
28 |
13
|
adantr |
|- ( ( ph /\ ( F ( *p ` J ) H ) ( ~=ph ` J ) P ) -> H e. ( II Cn J ) ) |
29 |
4
|
adantr |
|- ( ( ph /\ ( F ( *p ` J ) H ) ( ~=ph ` J ) P ) -> G e. ( II Cn J ) ) |
30 |
12
|
adantr |
|- ( ( ph /\ ( F ( *p ` J ) H ) ( ~=ph ` J ) P ) -> ( F ` 1 ) = ( H ` 0 ) ) |
31 |
10
|
simp3d |
|- ( ph -> ( H ` 1 ) = ( G ` 0 ) ) |
32 |
31
|
adantr |
|- ( ( ph /\ ( F ( *p ` J ) H ) ( ~=ph ` J ) P ) -> ( H ` 1 ) = ( G ` 0 ) ) |
33 |
|
eqid |
|- ( y e. ( 0 [,] 1 ) |-> if ( y <_ ( 1 / 2 ) , if ( y <_ ( 1 / 4 ) , ( 2 x. y ) , ( y + ( 1 / 4 ) ) ) , ( ( y / 2 ) + ( 1 / 2 ) ) ) ) = ( y e. ( 0 [,] 1 ) |-> if ( y <_ ( 1 / 2 ) , if ( y <_ ( 1 / 4 ) , ( 2 x. y ) , ( y + ( 1 / 4 ) ) ) , ( ( y / 2 ) + ( 1 / 2 ) ) ) ) |
34 |
17 28 29 30 32 33
|
pcoass |
|- ( ( ph /\ ( F ( *p ` J ) H ) ( ~=ph ` J ) P ) -> ( ( F ( *p ` J ) H ) ( *p ` J ) G ) ( ~=ph ` J ) ( F ( *p ` J ) ( H ( *p ` J ) G ) ) ) |
35 |
3 13
|
pco1 |
|- ( ph -> ( ( F ( *p ` J ) H ) ` 1 ) = ( H ` 1 ) ) |
36 |
35 31
|
eqtrd |
|- ( ph -> ( ( F ( *p ` J ) H ) ` 1 ) = ( G ` 0 ) ) |
37 |
36
|
adantr |
|- ( ( ph /\ ( F ( *p ` J ) H ) ( ~=ph ` J ) P ) -> ( ( F ( *p ` J ) H ) ` 1 ) = ( G ` 0 ) ) |
38 |
|
simpr |
|- ( ( ph /\ ( F ( *p ` J ) H ) ( ~=ph ` J ) P ) -> ( F ( *p ` J ) H ) ( ~=ph ` J ) P ) |
39 |
8 29
|
erref |
|- ( ( ph /\ ( F ( *p ` J ) H ) ( ~=ph ` J ) P ) -> G ( ~=ph ` J ) G ) |
40 |
37 38 39
|
pcohtpy |
|- ( ( ph /\ ( F ( *p ` J ) H ) ( ~=ph ` J ) P ) -> ( ( F ( *p ` J ) H ) ( *p ` J ) G ) ( ~=ph ` J ) ( P ( *p ` J ) G ) ) |
41 |
8 34 40
|
ertr3d |
|- ( ( ph /\ ( F ( *p ` J ) H ) ( ~=ph ` J ) P ) -> ( F ( *p ` J ) ( H ( *p ` J ) G ) ) ( ~=ph ` J ) ( P ( *p ` J ) G ) ) |
42 |
5
|
adantr |
|- ( ( ph /\ ( F ( *p ` J ) H ) ( ~=ph ` J ) P ) -> ( F ` 0 ) = ( G ` 0 ) ) |
43 |
42
|
eqcomd |
|- ( ( ph /\ ( F ( *p ` J ) H ) ( ~=ph ` J ) P ) -> ( G ` 0 ) = ( F ` 0 ) ) |
44 |
2
|
pcopt |
|- ( ( G e. ( II Cn J ) /\ ( G ` 0 ) = ( F ` 0 ) ) -> ( P ( *p ` J ) G ) ( ~=ph ` J ) G ) |
45 |
29 43 44
|
syl2anc |
|- ( ( ph /\ ( F ( *p ` J ) H ) ( ~=ph ` J ) P ) -> ( P ( *p ` J ) G ) ( ~=ph ` J ) G ) |
46 |
8 41 45
|
ertrd |
|- ( ( ph /\ ( F ( *p ` J ) H ) ( ~=ph ` J ) P ) -> ( F ( *p ` J ) ( H ( *p ` J ) G ) ) ( ~=ph ` J ) G ) |
47 |
8 27 46
|
ertr3d |
|- ( ( ph /\ ( F ( *p ` J ) H ) ( ~=ph ` J ) P ) -> F ( ~=ph ` J ) G ) |
48 |
7
|
a1i |
|- ( ( ph /\ F ( ~=ph ` J ) G ) -> ( ~=ph ` J ) Er ( II Cn J ) ) |
49 |
12
|
adantr |
|- ( ( ph /\ F ( ~=ph ` J ) G ) -> ( F ` 1 ) = ( H ` 0 ) ) |
50 |
|
simpr |
|- ( ( ph /\ F ( ~=ph ` J ) G ) -> F ( ~=ph ` J ) G ) |
51 |
13
|
adantr |
|- ( ( ph /\ F ( ~=ph ` J ) G ) -> H e. ( II Cn J ) ) |
52 |
48 51
|
erref |
|- ( ( ph /\ F ( ~=ph ` J ) G ) -> H ( ~=ph ` J ) H ) |
53 |
49 50 52
|
pcohtpy |
|- ( ( ph /\ F ( ~=ph ` J ) G ) -> ( F ( *p ` J ) H ) ( ~=ph ` J ) ( G ( *p ` J ) H ) ) |
54 |
|
eqid |
|- ( ( 0 [,] 1 ) X. { ( G ` 0 ) } ) = ( ( 0 [,] 1 ) X. { ( G ` 0 ) } ) |
55 |
1 54
|
pcorev2 |
|- ( G e. ( II Cn J ) -> ( G ( *p ` J ) H ) ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( G ` 0 ) } ) ) |
56 |
4 55
|
syl |
|- ( ph -> ( G ( *p ` J ) H ) ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( G ` 0 ) } ) ) |
57 |
5
|
sneqd |
|- ( ph -> { ( F ` 0 ) } = { ( G ` 0 ) } ) |
58 |
57
|
xpeq2d |
|- ( ph -> ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) = ( ( 0 [,] 1 ) X. { ( G ` 0 ) } ) ) |
59 |
2 58
|
eqtrid |
|- ( ph -> P = ( ( 0 [,] 1 ) X. { ( G ` 0 ) } ) ) |
60 |
56 59
|
breqtrrd |
|- ( ph -> ( G ( *p ` J ) H ) ( ~=ph ` J ) P ) |
61 |
60
|
adantr |
|- ( ( ph /\ F ( ~=ph ` J ) G ) -> ( G ( *p ` J ) H ) ( ~=ph ` J ) P ) |
62 |
48 53 61
|
ertrd |
|- ( ( ph /\ F ( ~=ph ` J ) G ) -> ( F ( *p ` J ) H ) ( ~=ph ` J ) P ) |
63 |
47 62
|
impbida |
|- ( ph -> ( ( F ( *p ` J ) H ) ( ~=ph ` J ) P <-> F ( ~=ph ` J ) G ) ) |