| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pcophtb.h |
⊢ 𝐻 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝐺 ‘ ( 1 − 𝑥 ) ) ) |
| 2 |
|
pcophtb.p |
⊢ 𝑃 = ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) |
| 3 |
|
pcophtb.f |
⊢ ( 𝜑 → 𝐹 ∈ ( II Cn 𝐽 ) ) |
| 4 |
|
pcophtb.g |
⊢ ( 𝜑 → 𝐺 ∈ ( II Cn 𝐽 ) ) |
| 5 |
|
pcophtb.0 |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = ( 𝐺 ‘ 0 ) ) |
| 6 |
|
pcophtb.1 |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) |
| 7 |
|
phtpcer |
⊢ ( ≃ph ‘ 𝐽 ) Er ( II Cn 𝐽 ) |
| 8 |
7
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( ≃ph ‘ 𝐽 ) 𝑃 ) → ( ≃ph ‘ 𝐽 ) Er ( II Cn 𝐽 ) ) |
| 9 |
1
|
pcorevcl |
⊢ ( 𝐺 ∈ ( II Cn 𝐽 ) → ( 𝐻 ∈ ( II Cn 𝐽 ) ∧ ( 𝐻 ‘ 0 ) = ( 𝐺 ‘ 1 ) ∧ ( 𝐻 ‘ 1 ) = ( 𝐺 ‘ 0 ) ) ) |
| 10 |
4 9
|
syl |
⊢ ( 𝜑 → ( 𝐻 ∈ ( II Cn 𝐽 ) ∧ ( 𝐻 ‘ 0 ) = ( 𝐺 ‘ 1 ) ∧ ( 𝐻 ‘ 1 ) = ( 𝐺 ‘ 0 ) ) ) |
| 11 |
10
|
simp2d |
⊢ ( 𝜑 → ( 𝐻 ‘ 0 ) = ( 𝐺 ‘ 1 ) ) |
| 12 |
6 11
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = ( 𝐻 ‘ 0 ) ) |
| 13 |
10
|
simp1d |
⊢ ( 𝜑 → 𝐻 ∈ ( II Cn 𝐽 ) ) |
| 14 |
13 4
|
pco0 |
⊢ ( 𝜑 → ( ( 𝐻 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ‘ 0 ) = ( 𝐻 ‘ 0 ) ) |
| 15 |
12 14
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = ( ( 𝐻 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ‘ 0 ) ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( ≃ph ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ‘ 1 ) = ( ( 𝐻 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ‘ 0 ) ) |
| 17 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( ≃ph ‘ 𝐽 ) 𝑃 ) → 𝐹 ∈ ( II Cn 𝐽 ) ) |
| 18 |
8 17
|
erref |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( ≃ph ‘ 𝐽 ) 𝑃 ) → 𝐹 ( ≃ph ‘ 𝐽 ) 𝐹 ) |
| 19 |
|
eqid |
⊢ ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 1 ) } ) = ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 1 ) } ) |
| 20 |
1 19
|
pcorev |
⊢ ( 𝐺 ∈ ( II Cn 𝐽 ) → ( 𝐻 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 1 ) } ) ) |
| 21 |
4 20
|
syl |
⊢ ( 𝜑 → ( 𝐻 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 1 ) } ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( ≃ph ‘ 𝐽 ) 𝑃 ) → ( 𝐻 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 1 ) } ) ) |
| 23 |
16 18 22
|
pcohtpy |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( ≃ph ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝐻 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ) ( ≃ph ‘ 𝐽 ) ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 1 ) } ) ) ) |
| 24 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( ≃ph ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) |
| 25 |
19
|
pcopt2 |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) → ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 1 ) } ) ) ( ≃ph ‘ 𝐽 ) 𝐹 ) |
| 26 |
17 24 25
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( ≃ph ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 1 ) } ) ) ( ≃ph ‘ 𝐽 ) 𝐹 ) |
| 27 |
8 23 26
|
ertrd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( ≃ph ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝐻 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ) ( ≃ph ‘ 𝐽 ) 𝐹 ) |
| 28 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( ≃ph ‘ 𝐽 ) 𝑃 ) → 𝐻 ∈ ( II Cn 𝐽 ) ) |
| 29 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( ≃ph ‘ 𝐽 ) 𝑃 ) → 𝐺 ∈ ( II Cn 𝐽 ) ) |
| 30 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( ≃ph ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ‘ 1 ) = ( 𝐻 ‘ 0 ) ) |
| 31 |
10
|
simp3d |
⊢ ( 𝜑 → ( 𝐻 ‘ 1 ) = ( 𝐺 ‘ 0 ) ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( ≃ph ‘ 𝐽 ) 𝑃 ) → ( 𝐻 ‘ 1 ) = ( 𝐺 ‘ 0 ) ) |
| 33 |
|
eqid |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) ↦ if ( 𝑦 ≤ ( 1 / 2 ) , if ( 𝑦 ≤ ( 1 / 4 ) , ( 2 · 𝑦 ) , ( 𝑦 + ( 1 / 4 ) ) ) , ( ( 𝑦 / 2 ) + ( 1 / 2 ) ) ) ) = ( 𝑦 ∈ ( 0 [,] 1 ) ↦ if ( 𝑦 ≤ ( 1 / 2 ) , if ( 𝑦 ≤ ( 1 / 4 ) , ( 2 · 𝑦 ) , ( 𝑦 + ( 1 / 4 ) ) ) , ( ( 𝑦 / 2 ) + ( 1 / 2 ) ) ) ) |
| 34 |
17 28 29 30 32 33
|
pcoass |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( ≃ph ‘ 𝐽 ) 𝑃 ) → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( *𝑝 ‘ 𝐽 ) 𝐺 ) ( ≃ph ‘ 𝐽 ) ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝐻 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ) ) |
| 35 |
3 13
|
pco1 |
⊢ ( 𝜑 → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ‘ 1 ) = ( 𝐻 ‘ 1 ) ) |
| 36 |
35 31
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ‘ 1 ) = ( 𝐺 ‘ 0 ) ) |
| 37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( ≃ph ‘ 𝐽 ) 𝑃 ) → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ‘ 1 ) = ( 𝐺 ‘ 0 ) ) |
| 38 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( ≃ph ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( ≃ph ‘ 𝐽 ) 𝑃 ) |
| 39 |
8 29
|
erref |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( ≃ph ‘ 𝐽 ) 𝑃 ) → 𝐺 ( ≃ph ‘ 𝐽 ) 𝐺 ) |
| 40 |
37 38 39
|
pcohtpy |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( ≃ph ‘ 𝐽 ) 𝑃 ) → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( *𝑝 ‘ 𝐽 ) 𝐺 ) ( ≃ph ‘ 𝐽 ) ( 𝑃 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ) |
| 41 |
8 34 40
|
ertr3d |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( ≃ph ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝐻 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ) ( ≃ph ‘ 𝐽 ) ( 𝑃 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ) |
| 42 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( ≃ph ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ‘ 0 ) = ( 𝐺 ‘ 0 ) ) |
| 43 |
42
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( ≃ph ‘ 𝐽 ) 𝑃 ) → ( 𝐺 ‘ 0 ) = ( 𝐹 ‘ 0 ) ) |
| 44 |
2
|
pcopt |
⊢ ( ( 𝐺 ∈ ( II Cn 𝐽 ) ∧ ( 𝐺 ‘ 0 ) = ( 𝐹 ‘ 0 ) ) → ( 𝑃 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ( ≃ph ‘ 𝐽 ) 𝐺 ) |
| 45 |
29 43 44
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( ≃ph ‘ 𝐽 ) 𝑃 ) → ( 𝑃 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ( ≃ph ‘ 𝐽 ) 𝐺 ) |
| 46 |
8 41 45
|
ertrd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( ≃ph ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝐻 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ) ( ≃ph ‘ 𝐽 ) 𝐺 ) |
| 47 |
8 27 46
|
ertr3d |
⊢ ( ( 𝜑 ∧ ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( ≃ph ‘ 𝐽 ) 𝑃 ) → 𝐹 ( ≃ph ‘ 𝐽 ) 𝐺 ) |
| 48 |
7
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐹 ( ≃ph ‘ 𝐽 ) 𝐺 ) → ( ≃ph ‘ 𝐽 ) Er ( II Cn 𝐽 ) ) |
| 49 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ( ≃ph ‘ 𝐽 ) 𝐺 ) → ( 𝐹 ‘ 1 ) = ( 𝐻 ‘ 0 ) ) |
| 50 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ( ≃ph ‘ 𝐽 ) 𝐺 ) → 𝐹 ( ≃ph ‘ 𝐽 ) 𝐺 ) |
| 51 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ( ≃ph ‘ 𝐽 ) 𝐺 ) → 𝐻 ∈ ( II Cn 𝐽 ) ) |
| 52 |
48 51
|
erref |
⊢ ( ( 𝜑 ∧ 𝐹 ( ≃ph ‘ 𝐽 ) 𝐺 ) → 𝐻 ( ≃ph ‘ 𝐽 ) 𝐻 ) |
| 53 |
49 50 52
|
pcohtpy |
⊢ ( ( 𝜑 ∧ 𝐹 ( ≃ph ‘ 𝐽 ) 𝐺 ) → ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( ≃ph ‘ 𝐽 ) ( 𝐺 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ) |
| 54 |
|
eqid |
⊢ ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 0 ) } ) = ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 0 ) } ) |
| 55 |
1 54
|
pcorev2 |
⊢ ( 𝐺 ∈ ( II Cn 𝐽 ) → ( 𝐺 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 0 ) } ) ) |
| 56 |
4 55
|
syl |
⊢ ( 𝜑 → ( 𝐺 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 0 ) } ) ) |
| 57 |
5
|
sneqd |
⊢ ( 𝜑 → { ( 𝐹 ‘ 0 ) } = { ( 𝐺 ‘ 0 ) } ) |
| 58 |
57
|
xpeq2d |
⊢ ( 𝜑 → ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) = ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 0 ) } ) ) |
| 59 |
2 58
|
eqtrid |
⊢ ( 𝜑 → 𝑃 = ( ( 0 [,] 1 ) × { ( 𝐺 ‘ 0 ) } ) ) |
| 60 |
56 59
|
breqtrrd |
⊢ ( 𝜑 → ( 𝐺 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( ≃ph ‘ 𝐽 ) 𝑃 ) |
| 61 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ( ≃ph ‘ 𝐽 ) 𝐺 ) → ( 𝐺 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( ≃ph ‘ 𝐽 ) 𝑃 ) |
| 62 |
48 53 61
|
ertrd |
⊢ ( ( 𝜑 ∧ 𝐹 ( ≃ph ‘ 𝐽 ) 𝐺 ) → ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( ≃ph ‘ 𝐽 ) 𝑃 ) |
| 63 |
47 62
|
impbida |
⊢ ( 𝜑 → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐻 ) ( ≃ph ‘ 𝐽 ) 𝑃 ↔ 𝐹 ( ≃ph ‘ 𝐽 ) 𝐺 ) ) |