Metamath Proof Explorer


Theorem pcophtb

Description: The path homotopy equivalence relation on two paths F , G with the same start and end point can be written in terms of the loop F - G formed by concatenating F with the inverse of G . Thus, all the homotopy information in ~=phJ is available if we restrict our attention to closed loops, as in the definition of the fundamental group. (Contributed by Mario Carneiro, 12-Feb-2015)

Ref Expression
Hypotheses pcophtb.h H = x 0 1 G 1 x
pcophtb.p P = 0 1 × F 0
pcophtb.f φ F II Cn J
pcophtb.g φ G II Cn J
pcophtb.0 φ F 0 = G 0
pcophtb.1 φ F 1 = G 1
Assertion pcophtb φ F * 𝑝 J H ph J P F ph J G

Proof

Step Hyp Ref Expression
1 pcophtb.h H = x 0 1 G 1 x
2 pcophtb.p P = 0 1 × F 0
3 pcophtb.f φ F II Cn J
4 pcophtb.g φ G II Cn J
5 pcophtb.0 φ F 0 = G 0
6 pcophtb.1 φ F 1 = G 1
7 phtpcer ph J Er II Cn J
8 7 a1i φ F * 𝑝 J H ph J P ph J Er II Cn J
9 1 pcorevcl G II Cn J H II Cn J H 0 = G 1 H 1 = G 0
10 4 9 syl φ H II Cn J H 0 = G 1 H 1 = G 0
11 10 simp2d φ H 0 = G 1
12 6 11 eqtr4d φ F 1 = H 0
13 10 simp1d φ H II Cn J
14 13 4 pco0 φ H * 𝑝 J G 0 = H 0
15 12 14 eqtr4d φ F 1 = H * 𝑝 J G 0
16 15 adantr φ F * 𝑝 J H ph J P F 1 = H * 𝑝 J G 0
17 3 adantr φ F * 𝑝 J H ph J P F II Cn J
18 8 17 erref φ F * 𝑝 J H ph J P F ph J F
19 eqid 0 1 × G 1 = 0 1 × G 1
20 1 19 pcorev G II Cn J H * 𝑝 J G ph J 0 1 × G 1
21 4 20 syl φ H * 𝑝 J G ph J 0 1 × G 1
22 21 adantr φ F * 𝑝 J H ph J P H * 𝑝 J G ph J 0 1 × G 1
23 16 18 22 pcohtpy φ F * 𝑝 J H ph J P F * 𝑝 J H * 𝑝 J G ph J F * 𝑝 J 0 1 × G 1
24 6 adantr φ F * 𝑝 J H ph J P F 1 = G 1
25 19 pcopt2 F II Cn J F 1 = G 1 F * 𝑝 J 0 1 × G 1 ph J F
26 17 24 25 syl2anc φ F * 𝑝 J H ph J P F * 𝑝 J 0 1 × G 1 ph J F
27 8 23 26 ertrd φ F * 𝑝 J H ph J P F * 𝑝 J H * 𝑝 J G ph J F
28 13 adantr φ F * 𝑝 J H ph J P H II Cn J
29 4 adantr φ F * 𝑝 J H ph J P G II Cn J
30 12 adantr φ F * 𝑝 J H ph J P F 1 = H 0
31 10 simp3d φ H 1 = G 0
32 31 adantr φ F * 𝑝 J H ph J P H 1 = G 0
33 eqid y 0 1 if y 1 2 if y 1 4 2 y y + 1 4 y 2 + 1 2 = y 0 1 if y 1 2 if y 1 4 2 y y + 1 4 y 2 + 1 2
34 17 28 29 30 32 33 pcoass φ F * 𝑝 J H ph J P F * 𝑝 J H * 𝑝 J G ph J F * 𝑝 J H * 𝑝 J G
35 3 13 pco1 φ F * 𝑝 J H 1 = H 1
36 35 31 eqtrd φ F * 𝑝 J H 1 = G 0
37 36 adantr φ F * 𝑝 J H ph J P F * 𝑝 J H 1 = G 0
38 simpr φ F * 𝑝 J H ph J P F * 𝑝 J H ph J P
39 8 29 erref φ F * 𝑝 J H ph J P G ph J G
40 37 38 39 pcohtpy φ F * 𝑝 J H ph J P F * 𝑝 J H * 𝑝 J G ph J P * 𝑝 J G
41 8 34 40 ertr3d φ F * 𝑝 J H ph J P F * 𝑝 J H * 𝑝 J G ph J P * 𝑝 J G
42 5 adantr φ F * 𝑝 J H ph J P F 0 = G 0
43 42 eqcomd φ F * 𝑝 J H ph J P G 0 = F 0
44 2 pcopt G II Cn J G 0 = F 0 P * 𝑝 J G ph J G
45 29 43 44 syl2anc φ F * 𝑝 J H ph J P P * 𝑝 J G ph J G
46 8 41 45 ertrd φ F * 𝑝 J H ph J P F * 𝑝 J H * 𝑝 J G ph J G
47 8 27 46 ertr3d φ F * 𝑝 J H ph J P F ph J G
48 7 a1i φ F ph J G ph J Er II Cn J
49 12 adantr φ F ph J G F 1 = H 0
50 simpr φ F ph J G F ph J G
51 13 adantr φ F ph J G H II Cn J
52 48 51 erref φ F ph J G H ph J H
53 49 50 52 pcohtpy φ F ph J G F * 𝑝 J H ph J G * 𝑝 J H
54 eqid 0 1 × G 0 = 0 1 × G 0
55 1 54 pcorev2 G II Cn J G * 𝑝 J H ph J 0 1 × G 0
56 4 55 syl φ G * 𝑝 J H ph J 0 1 × G 0
57 5 sneqd φ F 0 = G 0
58 57 xpeq2d φ 0 1 × F 0 = 0 1 × G 0
59 2 58 eqtrid φ P = 0 1 × G 0
60 56 59 breqtrrd φ G * 𝑝 J H ph J P
61 60 adantr φ F ph J G G * 𝑝 J H ph J P
62 48 53 61 ertrd φ F ph J G F * 𝑝 J H ph J P
63 47 62 impbida φ F * 𝑝 J H ph J P F ph J G