Step |
Hyp |
Ref |
Expression |
1 |
|
pcophtb.h |
|
2 |
|
pcophtb.p |
|
3 |
|
pcophtb.f |
|
4 |
|
pcophtb.g |
|
5 |
|
pcophtb.0 |
|
6 |
|
pcophtb.1 |
|
7 |
|
phtpcer |
|
8 |
7
|
a1i |
|
9 |
1
|
pcorevcl |
|
10 |
4 9
|
syl |
|
11 |
10
|
simp2d |
|
12 |
6 11
|
eqtr4d |
|
13 |
10
|
simp1d |
|
14 |
13 4
|
pco0 |
|
15 |
12 14
|
eqtr4d |
|
16 |
15
|
adantr |
|
17 |
3
|
adantr |
|
18 |
8 17
|
erref |
|
19 |
|
eqid |
|
20 |
1 19
|
pcorev |
|
21 |
4 20
|
syl |
|
22 |
21
|
adantr |
|
23 |
16 18 22
|
pcohtpy |
|
24 |
6
|
adantr |
|
25 |
19
|
pcopt2 |
|
26 |
17 24 25
|
syl2anc |
|
27 |
8 23 26
|
ertrd |
|
28 |
13
|
adantr |
|
29 |
4
|
adantr |
|
30 |
12
|
adantr |
|
31 |
10
|
simp3d |
|
32 |
31
|
adantr |
|
33 |
|
eqid |
|
34 |
17 28 29 30 32 33
|
pcoass |
|
35 |
3 13
|
pco1 |
|
36 |
35 31
|
eqtrd |
|
37 |
36
|
adantr |
|
38 |
|
simpr |
|
39 |
8 29
|
erref |
|
40 |
37 38 39
|
pcohtpy |
|
41 |
8 34 40
|
ertr3d |
|
42 |
5
|
adantr |
|
43 |
42
|
eqcomd |
|
44 |
2
|
pcopt |
|
45 |
29 43 44
|
syl2anc |
|
46 |
8 41 45
|
ertrd |
|
47 |
8 27 46
|
ertr3d |
|
48 |
7
|
a1i |
|
49 |
12
|
adantr |
|
50 |
|
simpr |
|
51 |
13
|
adantr |
|
52 |
48 51
|
erref |
|
53 |
49 50 52
|
pcohtpy |
|
54 |
|
eqid |
|
55 |
1 54
|
pcorev2 |
|
56 |
4 55
|
syl |
|
57 |
5
|
sneqd |
|
58 |
57
|
xpeq2d |
|
59 |
2 58
|
eqtrid |
|
60 |
56 59
|
breqtrrd |
|
61 |
60
|
adantr |
|
62 |
48 53 61
|
ertrd |
|
63 |
47 62
|
impbida |
|