| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pcophtb.h |
|
| 2 |
|
pcophtb.p |
|
| 3 |
|
pcophtb.f |
|
| 4 |
|
pcophtb.g |
|
| 5 |
|
pcophtb.0 |
|
| 6 |
|
pcophtb.1 |
|
| 7 |
|
phtpcer |
|
| 8 |
7
|
a1i |
|
| 9 |
1
|
pcorevcl |
|
| 10 |
4 9
|
syl |
|
| 11 |
10
|
simp2d |
|
| 12 |
6 11
|
eqtr4d |
|
| 13 |
10
|
simp1d |
|
| 14 |
13 4
|
pco0 |
|
| 15 |
12 14
|
eqtr4d |
|
| 16 |
15
|
adantr |
|
| 17 |
3
|
adantr |
|
| 18 |
8 17
|
erref |
|
| 19 |
|
eqid |
|
| 20 |
1 19
|
pcorev |
|
| 21 |
4 20
|
syl |
|
| 22 |
21
|
adantr |
|
| 23 |
16 18 22
|
pcohtpy |
|
| 24 |
6
|
adantr |
|
| 25 |
19
|
pcopt2 |
|
| 26 |
17 24 25
|
syl2anc |
|
| 27 |
8 23 26
|
ertrd |
|
| 28 |
13
|
adantr |
|
| 29 |
4
|
adantr |
|
| 30 |
12
|
adantr |
|
| 31 |
10
|
simp3d |
|
| 32 |
31
|
adantr |
|
| 33 |
|
eqid |
|
| 34 |
17 28 29 30 32 33
|
pcoass |
|
| 35 |
3 13
|
pco1 |
|
| 36 |
35 31
|
eqtrd |
|
| 37 |
36
|
adantr |
|
| 38 |
|
simpr |
|
| 39 |
8 29
|
erref |
|
| 40 |
37 38 39
|
pcohtpy |
|
| 41 |
8 34 40
|
ertr3d |
|
| 42 |
5
|
adantr |
|
| 43 |
42
|
eqcomd |
|
| 44 |
2
|
pcopt |
|
| 45 |
29 43 44
|
syl2anc |
|
| 46 |
8 41 45
|
ertrd |
|
| 47 |
8 27 46
|
ertr3d |
|
| 48 |
7
|
a1i |
|
| 49 |
12
|
adantr |
|
| 50 |
|
simpr |
|
| 51 |
13
|
adantr |
|
| 52 |
48 51
|
erref |
|
| 53 |
49 50 52
|
pcohtpy |
|
| 54 |
|
eqid |
|
| 55 |
1 54
|
pcorev2 |
|
| 56 |
4 55
|
syl |
|
| 57 |
5
|
sneqd |
|
| 58 |
57
|
xpeq2d |
|
| 59 |
2 58
|
eqtrid |
|
| 60 |
56 59
|
breqtrrd |
|
| 61 |
60
|
adantr |
|
| 62 |
48 53 61
|
ertrd |
|
| 63 |
47 62
|
impbida |
|