Metamath Proof Explorer


Theorem pcorev

Description: Concatenation with the reverse path. (Contributed by Jeff Madsen, 19-Jun-2010) (Revised by Mario Carneiro, 20-Dec-2013)

Ref Expression
Hypotheses pcorev.1 G = x 0 1 F 1 x
pcorev.2 P = 0 1 × F 1
Assertion pcorev F II Cn J G * 𝑝 J F ph J P

Proof

Step Hyp Ref Expression
1 pcorev.1 G = x 0 1 F 1 x
2 pcorev.2 P = 0 1 × F 1
3 eqid s 0 1 , t 0 1 F if s 1 2 1 1 t 2 s 1 1 t 1 2 s 1 = s 0 1 , t 0 1 F if s 1 2 1 1 t 2 s 1 1 t 1 2 s 1
4 1 2 3 pcorevlem F II Cn J s 0 1 , t 0 1 F if s 1 2 1 1 t 2 s 1 1 t 1 2 s 1 G * 𝑝 J F PHtpy J P G * 𝑝 J F ph J P
5 4 simprd F II Cn J G * 𝑝 J F ph J P