Metamath Proof Explorer


Theorem pcorev2

Description: Concatenation with the reverse path. (Contributed by Mario Carneiro, 12-Feb-2015)

Ref Expression
Hypotheses pcorev2.1 G=x01F1x
pcorev2.2 P=01×F0
Assertion pcorev2 FIICnJF*𝑝JGphJP

Proof

Step Hyp Ref Expression
1 pcorev2.1 G=x01F1x
2 pcorev2.2 P=01×F0
3 1 pcorevcl FIICnJGIICnJG0=F1G1=F0
4 3 simp1d FIICnJGIICnJ
5 eqid y01G1y=y01G1y
6 eqid 01×G1=01×G1
7 5 6 pcorev GIICnJy01G1y*𝑝JGphJ01×G1
8 4 7 syl FIICnJy01G1y*𝑝JGphJ01×G1
9 iirev y011y01
10 oveq2 x=1y1x=11y
11 10 fveq2d x=1yF1x=F11y
12 fvex F11yV
13 11 1 12 fvmpt 1y01G1y=F11y
14 9 13 syl y01G1y=F11y
15 ax-1cn 1
16 unitssre 01
17 16 sseli y01y
18 17 recnd y01y
19 nncan 1y11y=y
20 15 18 19 sylancr y0111y=y
21 20 fveq2d y01F11y=Fy
22 14 21 eqtrd y01G1y=Fy
23 22 mpteq2ia y01G1y=y01Fy
24 iiuni 01=II
25 eqid J=J
26 24 25 cnf FIICnJF:01J
27 26 feqmptd FIICnJF=y01Fy
28 23 27 eqtr4id FIICnJy01G1y=F
29 28 oveq1d FIICnJy01G1y*𝑝JG=F*𝑝JG
30 3 simp3d FIICnJG1=F0
31 30 sneqd FIICnJG1=F0
32 31 xpeq2d FIICnJ01×G1=01×F0
33 32 2 eqtr4di FIICnJ01×G1=P
34 8 29 33 3brtr3d FIICnJF*𝑝JGphJP