Metamath Proof Explorer


Theorem pcoass

Description: Order of concatenation does not affect homotopy class. (Contributed by Jeff Madsen, 19-Jun-2010) (Proof shortened by Mario Carneiro, 8-Jun-2014)

Ref Expression
Hypotheses pcoass.2 φ F II Cn J
pcoass.3 φ G II Cn J
pcoass.4 φ H II Cn J
pcoass.5 φ F 1 = G 0
pcoass.6 φ G 1 = H 0
pcoass.7 P = x 0 1 if x 1 2 if x 1 4 2 x x + 1 4 x 2 + 1 2
Assertion pcoass φ F * 𝑝 J G * 𝑝 J H ph J F * 𝑝 J G * 𝑝 J H

Proof

Step Hyp Ref Expression
1 pcoass.2 φ F II Cn J
2 pcoass.3 φ G II Cn J
3 pcoass.4 φ H II Cn J
4 pcoass.5 φ F 1 = G 0
5 pcoass.6 φ G 1 = H 0
6 pcoass.7 P = x 0 1 if x 1 2 if x 1 4 2 x x + 1 4 x 2 + 1 2
7 iftrue x 1 4 if x 1 4 2 x x + 1 4 = 2 x
8 7 fveq2d x 1 4 F * 𝑝 J G * 𝑝 J H if x 1 4 2 x x + 1 4 = F * 𝑝 J G * 𝑝 J H 2 x
9 8 adantl φ x 0 1 x 1 4 F * 𝑝 J G * 𝑝 J H if x 1 4 2 x x + 1 4 = F * 𝑝 J G * 𝑝 J H 2 x
10 2cn 2
11 elicc01 x 0 1 x 0 x x 1
12 11 simp1bi x 0 1 x
13 12 adantr x 0 1 x 1 4 x
14 13 recnd x 0 1 x 1 4 x
15 mulcom 2 x 2 x = x 2
16 10 14 15 sylancr x 0 1 x 1 4 2 x = x 2
17 11 simp2bi x 0 1 0 x
18 17 adantr x 0 1 x 1 4 0 x
19 simpr x 0 1 x 1 4 x 1 4
20 0re 0
21 4nn 4
22 nnrecre 4 1 4
23 21 22 ax-mp 1 4
24 20 23 elicc2i x 0 1 4 x 0 x x 1 4
25 13 18 19 24 syl3anbrc x 0 1 x 1 4 x 0 1 4
26 2rp 2 +
27 10 mul02i 0 2 = 0
28 23 recni 1 4
29 28 2timesi 2 1 4 = 1 4 + 1 4
30 2ne0 2 0
31 recdiv2 2 2 0 2 2 0 1 2 2 = 1 2 2
32 10 30 10 30 31 mp4an 1 2 2 = 1 2 2
33 2t2e4 2 2 = 4
34 33 oveq2i 1 2 2 = 1 4
35 32 34 eqtri 1 2 2 = 1 4
36 35 35 oveq12i 1 2 2 + 1 2 2 = 1 4 + 1 4
37 halfcn 1 2
38 2halves 1 2 1 2 2 + 1 2 2 = 1 2
39 37 38 ax-mp 1 2 2 + 1 2 2 = 1 2
40 36 39 eqtr3i 1 4 + 1 4 = 1 2
41 29 40 eqtri 2 1 4 = 1 2
42 10 28 41 mulcomli 1 4 2 = 1 2
43 20 23 26 27 42 iccdili x 0 1 4 x 2 0 1 2
44 25 43 syl x 0 1 x 1 4 x 2 0 1 2
45 16 44 eqeltrd x 0 1 x 1 4 2 x 0 1 2
46 2 3 5 pcocn φ G * 𝑝 J H II Cn J
47 1 46 pcoval1 φ 2 x 0 1 2 F * 𝑝 J G * 𝑝 J H 2 x = F 2 2 x
48 1 2 pcoval1 φ 2 x 0 1 2 F * 𝑝 J G 2 x = F 2 2 x
49 47 48 eqtr4d φ 2 x 0 1 2 F * 𝑝 J G * 𝑝 J H 2 x = F * 𝑝 J G 2 x
50 45 49 sylan2 φ x 0 1 x 1 4 F * 𝑝 J G * 𝑝 J H 2 x = F * 𝑝 J G 2 x
51 50 anassrs φ x 0 1 x 1 4 F * 𝑝 J G * 𝑝 J H 2 x = F * 𝑝 J G 2 x
52 9 51 eqtrd φ x 0 1 x 1 4 F * 𝑝 J G * 𝑝 J H if x 1 4 2 x x + 1 4 = F * 𝑝 J G 2 x
53 52 adantlr φ x 0 1 x 1 2 x 1 4 F * 𝑝 J G * 𝑝 J H if x 1 4 2 x x + 1 4 = F * 𝑝 J G 2 x
54 simplll φ x 0 1 x 1 2 ¬ x 1 4 φ
55 12 ad2antlr φ x 0 1 x 1 2 x
56 55 adantr φ x 0 1 x 1 2 ¬ x 1 4 x
57 letric x 1 4 x 1 4 1 4 x
58 55 23 57 sylancl φ x 0 1 x 1 2 x 1 4 1 4 x
59 58 orcanai φ x 0 1 x 1 2 ¬ x 1 4 1 4 x
60 simplr φ x 0 1 x 1 2 ¬ x 1 4 x 1 2
61 halfre 1 2
62 23 61 elicc2i x 1 4 1 2 x 1 4 x x 1 2
63 56 59 60 62 syl3anbrc φ x 0 1 x 1 2 ¬ x 1 4 x 1 4 1 2
64 62 simp1bi x 1 4 1 2 x
65 readdcl x 1 4 x + 1 4
66 64 23 65 sylancl x 1 4 1 2 x + 1 4
67 23 a1i x 1 4 1 2 1 4
68 62 simp2bi x 1 4 1 2 1 4 x
69 67 64 67 68 leadd1dd x 1 4 1 2 1 4 + 1 4 x + 1 4
70 40 69 eqbrtrrid x 1 4 1 2 1 2 x + 1 4
71 61 a1i x 1 4 1 2 1 2
72 62 simp3bi x 1 4 1 2 x 1 2
73 2lt4 2 < 4
74 2re 2
75 4re 4
76 2pos 0 < 2
77 4pos 0 < 4
78 74 75 76 77 ltrecii 2 < 4 1 4 < 1 2
79 73 78 mpbi 1 4 < 1 2
80 23 61 79 ltleii 1 4 1 2
81 80 a1i x 1 4 1 2 1 4 1 2
82 64 67 71 71 72 81 le2addd x 1 4 1 2 x + 1 4 1 2 + 1 2
83 ax-1cn 1
84 2halves 1 1 2 + 1 2 = 1
85 83 84 ax-mp 1 2 + 1 2 = 1
86 82 85 breqtrdi x 1 4 1 2 x + 1 4 1
87 1re 1
88 61 87 elicc2i x + 1 4 1 2 1 x + 1 4 1 2 x + 1 4 x + 1 4 1
89 66 70 86 88 syl3anbrc x 1 4 1 2 x + 1 4 1 2 1
90 63 89 syl φ x 0 1 x 1 2 ¬ x 1 4 x + 1 4 1 2 1
91 2 3 pco0 φ G * 𝑝 J H 0 = G 0
92 4 91 eqtr4d φ F 1 = G * 𝑝 J H 0
93 1 46 92 pcoval2 φ x + 1 4 1 2 1 F * 𝑝 J G * 𝑝 J H x + 1 4 = G * 𝑝 J H 2 x + 1 4 1
94 54 90 93 syl2anc φ x 0 1 x 1 2 ¬ x 1 4 F * 𝑝 J G * 𝑝 J H x + 1 4 = G * 𝑝 J H 2 x + 1 4 1
95 85 oveq2i 2 x + 1 4 1 2 + 1 2 = 2 x + 1 4 1
96 2cnd φ x 0 1 x 1 2 ¬ x 1 4 2
97 56 recnd φ x 0 1 x 1 2 ¬ x 1 4 x
98 28 a1i φ x 0 1 x 1 2 ¬ x 1 4 1 4
99 96 97 98 adddid φ x 0 1 x 1 2 ¬ x 1 4 2 x + 1 4 = 2 x + 2 1 4
100 41 oveq2i 2 x + 2 1 4 = 2 x + 1 2
101 99 100 eqtrdi φ x 0 1 x 1 2 ¬ x 1 4 2 x + 1 4 = 2 x + 1 2
102 101 oveq1d φ x 0 1 x 1 2 ¬ x 1 4 2 x + 1 4 1 2 + 1 2 = 2 x + 1 2 - 1 2 + 1 2
103 95 102 eqtr3id φ x 0 1 x 1 2 ¬ x 1 4 2 x + 1 4 1 = 2 x + 1 2 - 1 2 + 1 2
104 remulcl 2 x 2 x
105 74 56 104 sylancr φ x 0 1 x 1 2 ¬ x 1 4 2 x
106 105 recnd φ x 0 1 x 1 2 ¬ x 1 4 2 x
107 37 a1i φ x 0 1 x 1 2 ¬ x 1 4 1 2
108 106 107 107 pnpcan2d φ x 0 1 x 1 2 ¬ x 1 4 2 x + 1 2 - 1 2 + 1 2 = 2 x 1 2
109 103 108 eqtrd φ x 0 1 x 1 2 ¬ x 1 4 2 x + 1 4 1 = 2 x 1 2
110 109 fveq2d φ x 0 1 x 1 2 ¬ x 1 4 G * 𝑝 J H 2 x + 1 4 1 = G * 𝑝 J H 2 x 1 2
111 10 97 15 sylancr φ x 0 1 x 1 2 ¬ x 1 4 2 x = x 2
112 83 10 30 divcan1i 1 2 2 = 1
113 23 61 26 42 112 iccdili x 1 4 1 2 x 2 1 2 1
114 63 113 syl φ x 0 1 x 1 2 ¬ x 1 4 x 2 1 2 1
115 111 114 eqeltrd φ x 0 1 x 1 2 ¬ x 1 4 2 x 1 2 1
116 37 subidi 1 2 1 2 = 0
117 1mhlfehlf 1 1 2 = 1 2
118 61 87 61 116 117 iccshftli 2 x 1 2 1 2 x 1 2 0 1 2
119 115 118 syl φ x 0 1 x 1 2 ¬ x 1 4 2 x 1 2 0 1 2
120 2 3 pcoval1 φ 2 x 1 2 0 1 2 G * 𝑝 J H 2 x 1 2 = G 2 2 x 1 2
121 54 119 120 syl2anc φ x 0 1 x 1 2 ¬ x 1 4 G * 𝑝 J H 2 x 1 2 = G 2 2 x 1 2
122 96 106 107 subdid φ x 0 1 x 1 2 ¬ x 1 4 2 2 x 1 2 = 2 2 x 2 1 2
123 10 30 recidi 2 1 2 = 1
124 123 oveq2i 2 2 x 2 1 2 = 2 2 x 1
125 122 124 eqtrdi φ x 0 1 x 1 2 ¬ x 1 4 2 2 x 1 2 = 2 2 x 1
126 125 fveq2d φ x 0 1 x 1 2 ¬ x 1 4 G 2 2 x 1 2 = G 2 2 x 1
127 121 126 eqtrd φ x 0 1 x 1 2 ¬ x 1 4 G * 𝑝 J H 2 x 1 2 = G 2 2 x 1
128 94 110 127 3eqtrd φ x 0 1 x 1 2 ¬ x 1 4 F * 𝑝 J G * 𝑝 J H x + 1 4 = G 2 2 x 1
129 iffalse ¬ x 1 4 if x 1 4 2 x x + 1 4 = x + 1 4
130 129 fveq2d ¬ x 1 4 F * 𝑝 J G * 𝑝 J H if x 1 4 2 x x + 1 4 = F * 𝑝 J G * 𝑝 J H x + 1 4
131 130 adantl φ x 0 1 x 1 2 ¬ x 1 4 F * 𝑝 J G * 𝑝 J H if x 1 4 2 x x + 1 4 = F * 𝑝 J G * 𝑝 J H x + 1 4
132 1 2 4 pcoval2 φ 2 x 1 2 1 F * 𝑝 J G 2 x = G 2 2 x 1
133 54 115 132 syl2anc φ x 0 1 x 1 2 ¬ x 1 4 F * 𝑝 J G 2 x = G 2 2 x 1
134 128 131 133 3eqtr4d φ x 0 1 x 1 2 ¬ x 1 4 F * 𝑝 J G * 𝑝 J H if x 1 4 2 x x + 1 4 = F * 𝑝 J G 2 x
135 53 134 pm2.61dan φ x 0 1 x 1 2 F * 𝑝 J G * 𝑝 J H if x 1 4 2 x x + 1 4 = F * 𝑝 J G 2 x
136 iftrue x 1 2 if x 1 2 if x 1 4 2 x x + 1 4 x 2 + 1 2 = if x 1 4 2 x x + 1 4
137 136 fveq2d x 1 2 F * 𝑝 J G * 𝑝 J H if x 1 2 if x 1 4 2 x x + 1 4 x 2 + 1 2 = F * 𝑝 J G * 𝑝 J H if x 1 4 2 x x + 1 4
138 137 adantl φ x 0 1 x 1 2 F * 𝑝 J G * 𝑝 J H if x 1 2 if x 1 4 2 x x + 1 4 x 2 + 1 2 = F * 𝑝 J G * 𝑝 J H if x 1 4 2 x x + 1 4
139 iftrue x 1 2 if x 1 2 F * 𝑝 J G 2 x H 2 x 1 = F * 𝑝 J G 2 x
140 139 adantl φ x 0 1 x 1 2 if x 1 2 F * 𝑝 J G 2 x H 2 x 1 = F * 𝑝 J G 2 x
141 135 138 140 3eqtr4d φ x 0 1 x 1 2 F * 𝑝 J G * 𝑝 J H if x 1 2 if x 1 4 2 x x + 1 4 x 2 + 1 2 = if x 1 2 F * 𝑝 J G 2 x H 2 x 1
142 elii2 x 0 1 ¬ x 1 2 x 1 2 1
143 halfge0 0 1 2
144 halflt1 1 2 < 1
145 61 87 144 ltleii 1 2 1
146 elicc01 1 2 0 1 1 2 0 1 2 1 2 1
147 61 143 145 146 mpbir3an 1 2 0 1
148 1elunit 1 0 1
149 iccss2 1 2 0 1 1 0 1 1 2 1 0 1
150 147 148 149 mp2an 1 2 1 0 1
151 150 sseli x 1 2 1 x 0 1
152 10 30 div0i 0 2 = 0
153 eqid 1 2 = 1 2
154 20 87 26 152 153 icccntri x 0 1 x 2 0 1 2
155 37 addid2i 0 + 1 2 = 1 2
156 20 61 61 155 85 iccshftri x 2 0 1 2 x 2 + 1 2 1 2 1
157 151 154 156 3syl x 1 2 1 x 2 + 1 2 1 2 1
158 1 46 92 pcoval2 φ x 2 + 1 2 1 2 1 F * 𝑝 J G * 𝑝 J H x 2 + 1 2 = G * 𝑝 J H 2 x 2 + 1 2 1
159 157 158 sylan2 φ x 1 2 1 F * 𝑝 J G * 𝑝 J H x 2 + 1 2 = G * 𝑝 J H 2 x 2 + 1 2 1
160 61 87 elicc2i x 1 2 1 x 1 2 x x 1
161 160 simp1bi x 1 2 1 x
162 161 recnd x 1 2 1 x
163 1cnd x 1 2 1 1
164 2cnd x 1 2 1 2
165 30 a1i x 1 2 1 2 0
166 162 163 164 165 divdird x 1 2 1 x + 1 2 = x 2 + 1 2
167 166 oveq2d x 1 2 1 2 x + 1 2 = 2 x 2 + 1 2
168 peano2cn x x + 1
169 162 168 syl x 1 2 1 x + 1
170 169 164 165 divcan2d x 1 2 1 2 x + 1 2 = x + 1
171 167 170 eqtr3d x 1 2 1 2 x 2 + 1 2 = x + 1
172 162 163 171 mvrraddd x 1 2 1 2 x 2 + 1 2 1 = x
173 172 fveq2d x 1 2 1 G * 𝑝 J H 2 x 2 + 1 2 1 = G * 𝑝 J H x
174 173 adantl φ x 1 2 1 G * 𝑝 J H 2 x 2 + 1 2 1 = G * 𝑝 J H x
175 2 3 5 pcoval2 φ x 1 2 1 G * 𝑝 J H x = H 2 x 1
176 159 174 175 3eqtrd φ x 1 2 1 F * 𝑝 J G * 𝑝 J H x 2 + 1 2 = H 2 x 1
177 142 176 sylan2 φ x 0 1 ¬ x 1 2 F * 𝑝 J G * 𝑝 J H x 2 + 1 2 = H 2 x 1
178 177 anassrs φ x 0 1 ¬ x 1 2 F * 𝑝 J G * 𝑝 J H x 2 + 1 2 = H 2 x 1
179 iffalse ¬ x 1 2 if x 1 2 if x 1 4 2 x x + 1 4 x 2 + 1 2 = x 2 + 1 2
180 179 fveq2d ¬ x 1 2 F * 𝑝 J G * 𝑝 J H if x 1 2 if x 1 4 2 x x + 1 4 x 2 + 1 2 = F * 𝑝 J G * 𝑝 J H x 2 + 1 2
181 180 adantl φ x 0 1 ¬ x 1 2 F * 𝑝 J G * 𝑝 J H if x 1 2 if x 1 4 2 x x + 1 4 x 2 + 1 2 = F * 𝑝 J G * 𝑝 J H x 2 + 1 2
182 iffalse ¬ x 1 2 if x 1 2 F * 𝑝 J G 2 x H 2 x 1 = H 2 x 1
183 182 adantl φ x 0 1 ¬ x 1 2 if x 1 2 F * 𝑝 J G 2 x H 2 x 1 = H 2 x 1
184 178 181 183 3eqtr4d φ x 0 1 ¬ x 1 2 F * 𝑝 J G * 𝑝 J H if x 1 2 if x 1 4 2 x x + 1 4 x 2 + 1 2 = if x 1 2 F * 𝑝 J G 2 x H 2 x 1
185 141 184 pm2.61dan φ x 0 1 F * 𝑝 J G * 𝑝 J H if x 1 2 if x 1 4 2 x x + 1 4 x 2 + 1 2 = if x 1 2 F * 𝑝 J G 2 x H 2 x 1
186 185 mpteq2dva φ x 0 1 F * 𝑝 J G * 𝑝 J H if x 1 2 if x 1 4 2 x x + 1 4 x 2 + 1 2 = x 0 1 if x 1 2 F * 𝑝 J G 2 x H 2 x 1
187 iitopon II TopOn 0 1
188 187 a1i φ II TopOn 0 1
189 188 cnmptid φ x 0 1 x II Cn II
190 0elunit 0 0 1
191 190 a1i φ 0 0 1
192 188 188 191 cnmptc φ x 0 1 0 II Cn II
193 eqid topGen ran . = topGen ran .
194 eqid topGen ran . 𝑡 0 1 2 = topGen ran . 𝑡 0 1 2
195 eqid topGen ran . 𝑡 1 2 1 = topGen ran . 𝑡 1 2 1
196 dfii2 II = topGen ran . 𝑡 0 1
197 0red φ 0
198 1red φ 1
199 147 a1i φ 1 2 0 1
200 simprl φ y = 1 2 z 0 1 y = 1 2
201 200 oveq1d φ y = 1 2 z 0 1 y + 1 4 = 1 2 + 1 4
202 37 28 addcomi 1 2 + 1 4 = 1 4 + 1 2
203 201 202 eqtrdi φ y = 1 2 z 0 1 y + 1 4 = 1 4 + 1 2
204 23 61 ltnlei 1 4 < 1 2 ¬ 1 2 1 4
205 79 204 mpbi ¬ 1 2 1 4
206 200 breq1d φ y = 1 2 z 0 1 y 1 4 1 2 1 4
207 205 206 mtbiri φ y = 1 2 z 0 1 ¬ y 1 4
208 207 iffalsed φ y = 1 2 z 0 1 if y 1 4 2 y y + 1 4 = y + 1 4
209 200 oveq1d φ y = 1 2 z 0 1 y 2 = 1 2 2
210 209 35 eqtrdi φ y = 1 2 z 0 1 y 2 = 1 4
211 210 oveq1d φ y = 1 2 z 0 1 y 2 + 1 2 = 1 4 + 1 2
212 203 208 211 3eqtr4d φ y = 1 2 z 0 1 if y 1 4 2 y y + 1 4 = y 2 + 1 2
213 eqid topGen ran . 𝑡 0 1 4 = topGen ran . 𝑡 0 1 4
214 eqid topGen ran . 𝑡 1 4 1 2 = topGen ran . 𝑡 1 4 1 2
215 61 a1i φ 1 2
216 75 77 recgt0ii 0 < 1 4
217 20 23 216 ltleii 0 1 4
218 20 61 elicc2i 1 4 0 1 2 1 4 0 1 4 1 4 1 2
219 23 217 80 218 mpbir3an 1 4 0 1 2
220 219 a1i φ 1 4 0 1 2
221 simprl φ y = 1 4 z 0 1 y = 1 4
222 221 oveq2d φ y = 1 4 z 0 1 2 y = 2 1 4
223 221 oveq1d φ y = 1 4 z 0 1 y + 1 4 = 1 4 + 1 4
224 29 222 223 3eqtr4a φ y = 1 4 z 0 1 2 y = y + 1 4
225 retopon topGen ran . TopOn
226 0xr 0 *
227 61 rexri 1 2 *
228 lbicc2 0 * 1 2 * 0 1 2 0 0 1 2
229 226 227 143 228 mp3an 0 0 1 2
230 iccss2 0 0 1 2 1 4 0 1 2 0 1 4 0 1 2
231 229 219 230 mp2an 0 1 4 0 1 2
232 iccssre 0 1 2 0 1 2
233 20 61 232 mp2an 0 1 2
234 231 233 sstri 0 1 4
235 resttopon topGen ran . TopOn 0 1 4 topGen ran . 𝑡 0 1 4 TopOn 0 1 4
236 225 234 235 mp2an topGen ran . 𝑡 0 1 4 TopOn 0 1 4
237 236 a1i φ topGen ran . 𝑡 0 1 4 TopOn 0 1 4
238 237 188 cnmpt1st φ y 0 1 4 , z 0 1 y topGen ran . 𝑡 0 1 4 × t II Cn topGen ran . 𝑡 0 1 4
239 retop topGen ran . Top
240 ovex 0 1 2 V
241 restabs topGen ran . Top 0 1 4 0 1 2 0 1 2 V topGen ran . 𝑡 0 1 2 𝑡 0 1 4 = topGen ran . 𝑡 0 1 4
242 239 231 240 241 mp3an topGen ran . 𝑡 0 1 2 𝑡 0 1 4 = topGen ran . 𝑡 0 1 4
243 242 eqcomi topGen ran . 𝑡 0 1 4 = topGen ran . 𝑡 0 1 2 𝑡 0 1 4
244 resttopon topGen ran . TopOn 0 1 2 topGen ran . 𝑡 0 1 2 TopOn 0 1 2
245 225 233 244 mp2an topGen ran . 𝑡 0 1 2 TopOn 0 1 2
246 245 a1i φ topGen ran . 𝑡 0 1 2 TopOn 0 1 2
247 231 a1i φ 0 1 4 0 1 2
248 194 iihalf1cn x 0 1 2 2 x topGen ran . 𝑡 0 1 2 Cn II
249 248 a1i φ x 0 1 2 2 x topGen ran . 𝑡 0 1 2 Cn II
250 243 246 247 249 cnmpt1res φ x 0 1 4 2 x topGen ran . 𝑡 0 1 4 Cn II
251 oveq2 x = y 2 x = 2 y
252 237 188 238 237 250 251 cnmpt21 φ y 0 1 4 , z 0 1 2 y topGen ran . 𝑡 0 1 4 × t II Cn II
253 iccssre 1 4 1 2 1 4 1 2
254 23 61 253 mp2an 1 4 1 2
255 resttopon topGen ran . TopOn 1 4 1 2 topGen ran . 𝑡 1 4 1 2 TopOn 1 4 1 2
256 225 254 255 mp2an topGen ran . 𝑡 1 4 1 2 TopOn 1 4 1 2
257 256 a1i φ topGen ran . 𝑡 1 4 1 2 TopOn 1 4 1 2
258 257 188 cnmpt1st φ y 1 4 1 2 , z 0 1 y topGen ran . 𝑡 1 4 1 2 × t II Cn topGen ran . 𝑡 1 4 1 2
259 eqid TopOpen fld = TopOpen fld
260 254 a1i φ 1 4 1 2
261 unitssre 0 1
262 261 a1i φ 0 1
263 150 89 sselid x 1 4 1 2 x + 1 4 0 1
264 263 adantl φ x 1 4 1 2 x + 1 4 0 1
265 259 cnfldtopon TopOpen fld TopOn
266 265 a1i φ TopOpen fld TopOn
267 266 cnmptid φ x x TopOpen fld Cn TopOpen fld
268 23 a1i φ 1 4
269 268 recnd φ 1 4
270 266 266 269 cnmptc φ x 1 4 TopOpen fld Cn TopOpen fld
271 259 addcn + TopOpen fld × t TopOpen fld Cn TopOpen fld
272 271 a1i φ + TopOpen fld × t TopOpen fld Cn TopOpen fld
273 266 267 270 272 cnmpt12f φ x x + 1 4 TopOpen fld Cn TopOpen fld
274 259 214 196 260 262 264 273 cnmptre φ x 1 4 1 2 x + 1 4 topGen ran . 𝑡 1 4 1 2 Cn II
275 oveq1 x = y x + 1 4 = y + 1 4
276 257 188 258 257 274 275 cnmpt21 φ y 1 4 1 2 , z 0 1 y + 1 4 topGen ran . 𝑡 1 4 1 2 × t II Cn II
277 193 213 214 194 197 215 220 188 224 252 276 cnmpopc φ y 0 1 2 , z 0 1 if y 1 4 2 y y + 1 4 topGen ran . 𝑡 0 1 2 × t II Cn II
278 iccssre 1 2 1 1 2 1
279 61 87 278 mp2an 1 2 1
280 resttopon topGen ran . TopOn 1 2 1 topGen ran . 𝑡 1 2 1 TopOn 1 2 1
281 225 279 280 mp2an topGen ran . 𝑡 1 2 1 TopOn 1 2 1
282 281 a1i φ topGen ran . 𝑡 1 2 1 TopOn 1 2 1
283 282 188 cnmpt1st φ y 1 2 1 , z 0 1 y topGen ran . 𝑡 1 2 1 × t II Cn topGen ran . 𝑡 1 2 1
284 279 a1i φ 1 2 1
285 150 157 sselid x 1 2 1 x 2 + 1 2 0 1
286 285 adantl φ x 1 2 1 x 2 + 1 2 0 1
287 259 divccn 2 2 0 x x 2 TopOpen fld Cn TopOpen fld
288 10 30 287 mp2an x x 2 TopOpen fld Cn TopOpen fld
289 288 a1i φ x x 2 TopOpen fld Cn TopOpen fld
290 37 a1i φ 1 2
291 266 266 290 cnmptc φ x 1 2 TopOpen fld Cn TopOpen fld
292 266 289 291 272 cnmpt12f φ x x 2 + 1 2 TopOpen fld Cn TopOpen fld
293 259 195 196 284 262 286 292 cnmptre φ x 1 2 1 x 2 + 1 2 topGen ran . 𝑡 1 2 1 Cn II
294 oveq1 x = y x 2 = y 2
295 294 oveq1d x = y x 2 + 1 2 = y 2 + 1 2
296 282 188 283 282 293 295 cnmpt21 φ y 1 2 1 , z 0 1 y 2 + 1 2 topGen ran . 𝑡 1 2 1 × t II Cn II
297 193 194 195 196 197 198 199 188 212 277 296 cnmpopc φ y 0 1 , z 0 1 if y 1 2 if y 1 4 2 y y + 1 4 y 2 + 1 2 II × t II Cn II
298 breq1 x = y x 1 2 y 1 2
299 breq1 x = y x 1 4 y 1 4
300 299 251 275 ifbieq12d x = y if x 1 4 2 x x + 1 4 = if y 1 4 2 y y + 1 4
301 298 300 295 ifbieq12d x = y if x 1 2 if x 1 4 2 x x + 1 4 x 2 + 1 2 = if y 1 2 if y 1 4 2 y y + 1 4 y 2 + 1 2
302 301 equcoms y = x if x 1 2 if x 1 4 2 x x + 1 4 x 2 + 1 2 = if y 1 2 if y 1 4 2 y y + 1 4 y 2 + 1 2
303 302 adantr y = x z = 0 if x 1 2 if x 1 4 2 x x + 1 4 x 2 + 1 2 = if y 1 2 if y 1 4 2 y y + 1 4 y 2 + 1 2
304 303 eqcomd y = x z = 0 if y 1 2 if y 1 4 2 y y + 1 4 y 2 + 1 2 = if x 1 2 if x 1 4 2 x x + 1 4 x 2 + 1 2
305 188 189 192 188 188 297 304 cnmpt12 φ x 0 1 if x 1 2 if x 1 4 2 x x + 1 4 x 2 + 1 2 II Cn II
306 6 305 eqeltrid φ P II Cn II
307 iiuni 0 1 = II
308 307 307 cnf P II Cn II P : 0 1 0 1
309 306 308 syl φ P : 0 1 0 1
310 6 fmpt x 0 1 if x 1 2 if x 1 4 2 x x + 1 4 x 2 + 1 2 0 1 P : 0 1 0 1
311 309 310 sylibr φ x 0 1 if x 1 2 if x 1 4 2 x x + 1 4 x 2 + 1 2 0 1
312 6 a1i φ P = x 0 1 if x 1 2 if x 1 4 2 x x + 1 4 x 2 + 1 2
313 1 46 92 pcocn φ F * 𝑝 J G * 𝑝 J H II Cn J
314 eqid J = J
315 307 314 cnf F * 𝑝 J G * 𝑝 J H II Cn J F * 𝑝 J G * 𝑝 J H : 0 1 J
316 313 315 syl φ F * 𝑝 J G * 𝑝 J H : 0 1 J
317 316 feqmptd φ F * 𝑝 J G * 𝑝 J H = y 0 1 F * 𝑝 J G * 𝑝 J H y
318 fveq2 y = if x 1 2 if x 1 4 2 x x + 1 4 x 2 + 1 2 F * 𝑝 J G * 𝑝 J H y = F * 𝑝 J G * 𝑝 J H if x 1 2 if x 1 4 2 x x + 1 4 x 2 + 1 2
319 311 312 317 318 fmptcof φ F * 𝑝 J G * 𝑝 J H P = x 0 1 F * 𝑝 J G * 𝑝 J H if x 1 2 if x 1 4 2 x x + 1 4 x 2 + 1 2
320 1 2 4 pcocn φ F * 𝑝 J G II Cn J
321 320 3 pcoval φ F * 𝑝 J G * 𝑝 J H = x 0 1 if x 1 2 F * 𝑝 J G 2 x H 2 x 1
322 186 319 321 3eqtr4rd φ F * 𝑝 J G * 𝑝 J H = F * 𝑝 J G * 𝑝 J H P
323 id x = 0 x = 0
324 323 143 eqbrtrdi x = 0 x 1 2
325 324 iftrued x = 0 if x 1 2 if x 1 4 2 x x + 1 4 x 2 + 1 2 = if x 1 4 2 x x + 1 4
326 323 217 eqbrtrdi x = 0 x 1 4
327 326 iftrued x = 0 if x 1 4 2 x x + 1 4 = 2 x
328 oveq2 x = 0 2 x = 2 0
329 2t0e0 2 0 = 0
330 328 329 eqtrdi x = 0 2 x = 0
331 325 327 330 3eqtrd x = 0 if x 1 2 if x 1 4 2 x x + 1 4 x 2 + 1 2 = 0
332 c0ex 0 V
333 331 6 332 fvmpt 0 0 1 P 0 = 0
334 191 333 syl φ P 0 = 0
335 148 a1i φ 1 0 1
336 61 87 ltnlei 1 2 < 1 ¬ 1 1 2
337 144 336 mpbi ¬ 1 1 2
338 breq1 x = 1 x 1 2 1 1 2
339 337 338 mtbiri x = 1 ¬ x 1 2
340 339 iffalsed x = 1 if x 1 2 if x 1 4 2 x x + 1 4 x 2 + 1 2 = x 2 + 1 2
341 oveq1 x = 1 x 2 = 1 2
342 341 oveq1d x = 1 x 2 + 1 2 = 1 2 + 1 2
343 342 85 eqtrdi x = 1 x 2 + 1 2 = 1
344 340 343 eqtrd x = 1 if x 1 2 if x 1 4 2 x x + 1 4 x 2 + 1 2 = 1
345 1ex 1 V
346 344 6 345 fvmpt 1 0 1 P 1 = 1
347 335 346 syl φ P 1 = 1
348 313 306 334 347 reparpht φ F * 𝑝 J G * 𝑝 J H P ph J F * 𝑝 J G * 𝑝 J H
349 322 348 eqbrtrd φ F * 𝑝 J G * 𝑝 J H ph J F * 𝑝 J G * 𝑝 J H