| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pcorev.1 |
|- G = ( x e. ( 0 [,] 1 ) |-> ( F ` ( 1 - x ) ) ) |
| 2 |
|
iitopon |
|- II e. ( TopOn ` ( 0 [,] 1 ) ) |
| 3 |
2
|
a1i |
|- ( F e. ( II Cn J ) -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) |
| 4 |
|
iirevcn |
|- ( x e. ( 0 [,] 1 ) |-> ( 1 - x ) ) e. ( II Cn II ) |
| 5 |
4
|
a1i |
|- ( F e. ( II Cn J ) -> ( x e. ( 0 [,] 1 ) |-> ( 1 - x ) ) e. ( II Cn II ) ) |
| 6 |
|
id |
|- ( F e. ( II Cn J ) -> F e. ( II Cn J ) ) |
| 7 |
3 5 6
|
cnmpt11f |
|- ( F e. ( II Cn J ) -> ( x e. ( 0 [,] 1 ) |-> ( F ` ( 1 - x ) ) ) e. ( II Cn J ) ) |
| 8 |
1 7
|
eqeltrid |
|- ( F e. ( II Cn J ) -> G e. ( II Cn J ) ) |
| 9 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
| 10 |
|
oveq2 |
|- ( x = 0 -> ( 1 - x ) = ( 1 - 0 ) ) |
| 11 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
| 12 |
10 11
|
eqtrdi |
|- ( x = 0 -> ( 1 - x ) = 1 ) |
| 13 |
12
|
fveq2d |
|- ( x = 0 -> ( F ` ( 1 - x ) ) = ( F ` 1 ) ) |
| 14 |
|
fvex |
|- ( F ` 1 ) e. _V |
| 15 |
13 1 14
|
fvmpt |
|- ( 0 e. ( 0 [,] 1 ) -> ( G ` 0 ) = ( F ` 1 ) ) |
| 16 |
9 15
|
mp1i |
|- ( F e. ( II Cn J ) -> ( G ` 0 ) = ( F ` 1 ) ) |
| 17 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
| 18 |
|
oveq2 |
|- ( x = 1 -> ( 1 - x ) = ( 1 - 1 ) ) |
| 19 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 20 |
18 19
|
eqtrdi |
|- ( x = 1 -> ( 1 - x ) = 0 ) |
| 21 |
20
|
fveq2d |
|- ( x = 1 -> ( F ` ( 1 - x ) ) = ( F ` 0 ) ) |
| 22 |
|
fvex |
|- ( F ` 0 ) e. _V |
| 23 |
21 1 22
|
fvmpt |
|- ( 1 e. ( 0 [,] 1 ) -> ( G ` 1 ) = ( F ` 0 ) ) |
| 24 |
17 23
|
mp1i |
|- ( F e. ( II Cn J ) -> ( G ` 1 ) = ( F ` 0 ) ) |
| 25 |
8 16 24
|
3jca |
|- ( F e. ( II Cn J ) -> ( G e. ( II Cn J ) /\ ( G ` 0 ) = ( F ` 1 ) /\ ( G ` 1 ) = ( F ` 0 ) ) ) |