Metamath Proof Explorer


Theorem pi1xfrf

Description: Functionality of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses pi1xfr.p P=Jπ1F0
pi1xfr.q Q=Jπ1F1
pi1xfr.b B=BaseP
pi1xfr.g G=rangBgphJI*𝑝Jg*𝑝JFphJ
pi1xfr.j φJTopOnX
pi1xfr.f φFIICnJ
pi1xfrval.i φIIICnJ
pi1xfrval.1 φF1=I0
pi1xfrval.2 φI1=F0
Assertion pi1xfrf φG:BBaseQ

Proof

Step Hyp Ref Expression
1 pi1xfr.p P=Jπ1F0
2 pi1xfr.q Q=Jπ1F1
3 pi1xfr.b B=BaseP
4 pi1xfr.g G=rangBgphJI*𝑝Jg*𝑝JFphJ
5 pi1xfr.j φJTopOnX
6 pi1xfr.f φFIICnJ
7 pi1xfrval.i φIIICnJ
8 pi1xfrval.1 φF1=I0
9 pi1xfrval.2 φI1=F0
10 5 adantr φgBJTopOnX
11 iitopon IITopOn01
12 cnf2 IITopOn01JTopOnXFIICnJF:01X
13 11 5 6 12 mp3an2i φF:01X
14 0elunit 001
15 ffvelcdm F:01X001F0X
16 13 14 15 sylancl φF0X
17 16 adantr φgBF0X
18 3 a1i φB=BaseP
19 1 5 16 18 pi1eluni φgBgIICnJg0=F0g1=F0
20 19 biimpa φgBgIICnJg0=F0g1=F0
21 20 simp1d φgBgIICnJ
22 20 simp2d φgBg0=F0
23 20 simp3d φgBg1=F0
24 1 3 10 17 21 22 23 elpi1i φgBgphJB
25 eqid BaseQ=BaseQ
26 1elunit 101
27 ffvelcdm F:01X101F1X
28 13 26 27 sylancl φF1X
29 28 adantr φgBF1X
30 7 adantr φgBIIICnJ
31 6 adantr φgBFIICnJ
32 21 31 23 pcocn φgBg*𝑝JFIICnJ
33 21 31 pco0 φgBg*𝑝JF0=g0
34 9 adantr φgBI1=F0
35 22 33 34 3eqtr4rd φgBI1=g*𝑝JF0
36 30 32 35 pcocn φgBI*𝑝Jg*𝑝JFIICnJ
37 30 32 pco0 φgBI*𝑝Jg*𝑝JF0=I0
38 8 adantr φgBF1=I0
39 37 38 eqtr4d φgBI*𝑝Jg*𝑝JF0=F1
40 30 32 pco1 φgBI*𝑝Jg*𝑝JF1=g*𝑝JF1
41 21 31 pco1 φgBg*𝑝JF1=F1
42 40 41 eqtrd φgBI*𝑝Jg*𝑝JF1=F1
43 2 25 10 29 36 39 42 elpi1i φgBI*𝑝Jg*𝑝JFphJBaseQ
44 eceq1 g=hgphJ=hphJ
45 oveq1 g=hg*𝑝JF=h*𝑝JF
46 45 oveq2d g=hI*𝑝Jg*𝑝JF=I*𝑝Jh*𝑝JF
47 46 eceq1d g=hI*𝑝Jg*𝑝JFphJ=I*𝑝Jh*𝑝JFphJ
48 phtpcer phJErIICnJ
49 48 a1i φgBhBgphJ=hphJphJErIICnJ
50 22 3ad2antr1 φgBhBgphJ=hphJg0=F0
51 21 3ad2antr1 φgBhBgphJ=hphJgIICnJ
52 6 adantr φgBhBgphJ=hphJFIICnJ
53 51 52 pco0 φgBhBgphJ=hphJg*𝑝JF0=g0
54 9 adantr φgBhBgphJ=hphJI1=F0
55 50 53 54 3eqtr4rd φgBhBgphJ=hphJI1=g*𝑝JF0
56 7 adantr φgBhBgphJ=hphJIIICnJ
57 49 56 erref φgBhBgphJ=hphJIphJI
58 23 3ad2antr1 φgBhBgphJ=hphJg1=F0
59 simpr3 φgBhBgphJ=hphJgphJ=hphJ
60 49 51 erth φgBhBgphJ=hphJgphJhgphJ=hphJ
61 59 60 mpbird φgBhBgphJ=hphJgphJh
62 49 52 erref φgBhBgphJ=hphJFphJF
63 58 61 62 pcohtpy φgBhBgphJ=hphJg*𝑝JFphJh*𝑝JF
64 55 57 63 pcohtpy φgBhBgphJ=hphJI*𝑝Jg*𝑝JFphJI*𝑝Jh*𝑝JF
65 49 64 erthi φgBhBgphJ=hphJI*𝑝Jg*𝑝JFphJ=I*𝑝Jh*𝑝JFphJ
66 4 24 43 44 47 65 fliftfund φFunG
67 4 24 43 fliftf φFunGG:rangBgphJBaseQ
68 66 67 mpbid φG:rangBgphJBaseQ
69 1 5 16 18 pi1bas2 φB=B/phJ
70 df-qs B/phJ=s|gBs=gphJ
71 eqid gBgphJ=gBgphJ
72 71 rnmpt rangBgphJ=s|gBs=gphJ
73 70 72 eqtr4i B/phJ=rangBgphJ
74 69 73 eqtrdi φB=rangBgphJ
75 74 feq2d φG:BBaseQG:rangBgphJBaseQ
76 68 75 mpbird φG:BBaseQ