Metamath Proof Explorer


Theorem pi1xfrval

Description: The value of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 12-Feb-2015) (Revised by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses pi1xfr.p P = J π 1 F 0
pi1xfr.q Q = J π 1 F 1
pi1xfr.b B = Base P
pi1xfr.g G = ran g B g ph J I * 𝑝 J g * 𝑝 J F ph J
pi1xfr.j φ J TopOn X
pi1xfr.f φ F II Cn J
pi1xfrval.i φ I II Cn J
pi1xfrval.1 φ F 1 = I 0
pi1xfrval.2 φ I 1 = F 0
pi1xfrval.a φ A B
Assertion pi1xfrval φ G A ph J = I * 𝑝 J A * 𝑝 J F ph J

Proof

Step Hyp Ref Expression
1 pi1xfr.p P = J π 1 F 0
2 pi1xfr.q Q = J π 1 F 1
3 pi1xfr.b B = Base P
4 pi1xfr.g G = ran g B g ph J I * 𝑝 J g * 𝑝 J F ph J
5 pi1xfr.j φ J TopOn X
6 pi1xfr.f φ F II Cn J
7 pi1xfrval.i φ I II Cn J
8 pi1xfrval.1 φ F 1 = I 0
9 pi1xfrval.2 φ I 1 = F 0
10 pi1xfrval.a φ A B
11 fvex ph J V
12 ecexg ph J V g ph J V
13 11 12 mp1i φ g B g ph J V
14 ecexg ph J V I * 𝑝 J g * 𝑝 J F ph J V
15 11 14 mp1i φ g B I * 𝑝 J g * 𝑝 J F ph J V
16 eceq1 g = A g ph J = A ph J
17 oveq1 g = A g * 𝑝 J F = A * 𝑝 J F
18 17 oveq2d g = A I * 𝑝 J g * 𝑝 J F = I * 𝑝 J A * 𝑝 J F
19 18 eceq1d g = A I * 𝑝 J g * 𝑝 J F ph J = I * 𝑝 J A * 𝑝 J F ph J
20 1 2 3 4 5 6 7 8 9 pi1xfrf φ G : B Base Q
21 20 ffund φ Fun G
22 4 13 15 16 19 21 fliftval φ A B G A ph J = I * 𝑝 J A * 𝑝 J F ph J
23 10 22 mpdan φ G A ph J = I * 𝑝 J A * 𝑝 J F ph J