Metamath Proof Explorer


Theorem pi1xfrval

Description: The value of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 12-Feb-2015) (Revised by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses pi1xfr.p P=Jπ1F0
pi1xfr.q Q=Jπ1F1
pi1xfr.b B=BaseP
pi1xfr.g G=rangBgphJI*𝑝Jg*𝑝JFphJ
pi1xfr.j φJTopOnX
pi1xfr.f φFIICnJ
pi1xfrval.i φIIICnJ
pi1xfrval.1 φF1=I0
pi1xfrval.2 φI1=F0
pi1xfrval.a φAB
Assertion pi1xfrval φGAphJ=I*𝑝JA*𝑝JFphJ

Proof

Step Hyp Ref Expression
1 pi1xfr.p P=Jπ1F0
2 pi1xfr.q Q=Jπ1F1
3 pi1xfr.b B=BaseP
4 pi1xfr.g G=rangBgphJI*𝑝Jg*𝑝JFphJ
5 pi1xfr.j φJTopOnX
6 pi1xfr.f φFIICnJ
7 pi1xfrval.i φIIICnJ
8 pi1xfrval.1 φF1=I0
9 pi1xfrval.2 φI1=F0
10 pi1xfrval.a φAB
11 fvex phJV
12 ecexg phJVgphJV
13 11 12 mp1i φgBgphJV
14 ecexg phJVI*𝑝Jg*𝑝JFphJV
15 11 14 mp1i φgBI*𝑝Jg*𝑝JFphJV
16 eceq1 g=AgphJ=AphJ
17 oveq1 g=Ag*𝑝JF=A*𝑝JF
18 17 oveq2d g=AI*𝑝Jg*𝑝JF=I*𝑝JA*𝑝JF
19 18 eceq1d g=AI*𝑝Jg*𝑝JFphJ=I*𝑝JA*𝑝JFphJ
20 1 2 3 4 5 6 7 8 9 pi1xfrf φG:BBaseQ
21 20 ffund φFunG
22 4 13 15 16 19 21 fliftval φABGAphJ=I*𝑝JA*𝑝JFphJ
23 10 22 mpdan φGAphJ=I*𝑝JA*𝑝JFphJ