| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pi1xfr.p |
|- P = ( J pi1 ( F ` 0 ) ) |
| 2 |
|
pi1xfr.q |
|- Q = ( J pi1 ( F ` 1 ) ) |
| 3 |
|
pi1xfr.b |
|- B = ( Base ` P ) |
| 4 |
|
pi1xfr.g |
|- G = ran ( g e. U. B |-> <. [ g ] ( ~=ph ` J ) , [ ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ] ( ~=ph ` J ) >. ) |
| 5 |
|
pi1xfr.j |
|- ( ph -> J e. ( TopOn ` X ) ) |
| 6 |
|
pi1xfr.f |
|- ( ph -> F e. ( II Cn J ) ) |
| 7 |
|
pi1xfrval.i |
|- ( ph -> I e. ( II Cn J ) ) |
| 8 |
|
pi1xfrval.1 |
|- ( ph -> ( F ` 1 ) = ( I ` 0 ) ) |
| 9 |
|
pi1xfrval.2 |
|- ( ph -> ( I ` 1 ) = ( F ` 0 ) ) |
| 10 |
|
pi1xfrval.a |
|- ( ph -> A e. U. B ) |
| 11 |
|
fvex |
|- ( ~=ph ` J ) e. _V |
| 12 |
|
ecexg |
|- ( ( ~=ph ` J ) e. _V -> [ g ] ( ~=ph ` J ) e. _V ) |
| 13 |
11 12
|
mp1i |
|- ( ( ph /\ g e. U. B ) -> [ g ] ( ~=ph ` J ) e. _V ) |
| 14 |
|
ecexg |
|- ( ( ~=ph ` J ) e. _V -> [ ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ] ( ~=ph ` J ) e. _V ) |
| 15 |
11 14
|
mp1i |
|- ( ( ph /\ g e. U. B ) -> [ ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ] ( ~=ph ` J ) e. _V ) |
| 16 |
|
eceq1 |
|- ( g = A -> [ g ] ( ~=ph ` J ) = [ A ] ( ~=ph ` J ) ) |
| 17 |
|
oveq1 |
|- ( g = A -> ( g ( *p ` J ) F ) = ( A ( *p ` J ) F ) ) |
| 18 |
17
|
oveq2d |
|- ( g = A -> ( I ( *p ` J ) ( g ( *p ` J ) F ) ) = ( I ( *p ` J ) ( A ( *p ` J ) F ) ) ) |
| 19 |
18
|
eceq1d |
|- ( g = A -> [ ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ] ( ~=ph ` J ) = [ ( I ( *p ` J ) ( A ( *p ` J ) F ) ) ] ( ~=ph ` J ) ) |
| 20 |
1 2 3 4 5 6 7 8 9
|
pi1xfrf |
|- ( ph -> G : B --> ( Base ` Q ) ) |
| 21 |
20
|
ffund |
|- ( ph -> Fun G ) |
| 22 |
4 13 15 16 19 21
|
fliftval |
|- ( ( ph /\ A e. U. B ) -> ( G ` [ A ] ( ~=ph ` J ) ) = [ ( I ( *p ` J ) ( A ( *p ` J ) F ) ) ] ( ~=ph ` J ) ) |
| 23 |
10 22
|
mpdan |
|- ( ph -> ( G ` [ A ] ( ~=ph ` J ) ) = [ ( I ( *p ` J ) ( A ( *p ` J ) F ) ) ] ( ~=ph ` J ) ) |