Step |
Hyp |
Ref |
Expression |
1 |
|
pi1xfr.p |
|- P = ( J pi1 ( F ` 0 ) ) |
2 |
|
pi1xfr.q |
|- Q = ( J pi1 ( F ` 1 ) ) |
3 |
|
pi1xfr.b |
|- B = ( Base ` P ) |
4 |
|
pi1xfr.g |
|- G = ran ( g e. U. B |-> <. [ g ] ( ~=ph ` J ) , [ ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ] ( ~=ph ` J ) >. ) |
5 |
|
pi1xfr.j |
|- ( ph -> J e. ( TopOn ` X ) ) |
6 |
|
pi1xfr.f |
|- ( ph -> F e. ( II Cn J ) ) |
7 |
|
pi1xfrval.i |
|- ( ph -> I e. ( II Cn J ) ) |
8 |
|
pi1xfrval.1 |
|- ( ph -> ( F ` 1 ) = ( I ` 0 ) ) |
9 |
|
pi1xfrval.2 |
|- ( ph -> ( I ` 1 ) = ( F ` 0 ) ) |
10 |
|
pi1xfrval.a |
|- ( ph -> A e. U. B ) |
11 |
|
fvex |
|- ( ~=ph ` J ) e. _V |
12 |
|
ecexg |
|- ( ( ~=ph ` J ) e. _V -> [ g ] ( ~=ph ` J ) e. _V ) |
13 |
11 12
|
mp1i |
|- ( ( ph /\ g e. U. B ) -> [ g ] ( ~=ph ` J ) e. _V ) |
14 |
|
ecexg |
|- ( ( ~=ph ` J ) e. _V -> [ ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ] ( ~=ph ` J ) e. _V ) |
15 |
11 14
|
mp1i |
|- ( ( ph /\ g e. U. B ) -> [ ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ] ( ~=ph ` J ) e. _V ) |
16 |
|
eceq1 |
|- ( g = A -> [ g ] ( ~=ph ` J ) = [ A ] ( ~=ph ` J ) ) |
17 |
|
oveq1 |
|- ( g = A -> ( g ( *p ` J ) F ) = ( A ( *p ` J ) F ) ) |
18 |
17
|
oveq2d |
|- ( g = A -> ( I ( *p ` J ) ( g ( *p ` J ) F ) ) = ( I ( *p ` J ) ( A ( *p ` J ) F ) ) ) |
19 |
18
|
eceq1d |
|- ( g = A -> [ ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ] ( ~=ph ` J ) = [ ( I ( *p ` J ) ( A ( *p ` J ) F ) ) ] ( ~=ph ` J ) ) |
20 |
1 2 3 4 5 6 7 8 9
|
pi1xfrf |
|- ( ph -> G : B --> ( Base ` Q ) ) |
21 |
20
|
ffund |
|- ( ph -> Fun G ) |
22 |
4 13 15 16 19 21
|
fliftval |
|- ( ( ph /\ A e. U. B ) -> ( G ` [ A ] ( ~=ph ` J ) ) = [ ( I ( *p ` J ) ( A ( *p ` J ) F ) ) ] ( ~=ph ` J ) ) |
23 |
10 22
|
mpdan |
|- ( ph -> ( G ` [ A ] ( ~=ph ` J ) ) = [ ( I ( *p ` J ) ( A ( *p ` J ) F ) ) ] ( ~=ph ` J ) ) |