Metamath Proof Explorer


Theorem pi1xfr

Description: Given a path F and its inverse I between two basepoints, there is an induced group homomorphism on the fundamental groups. (Contributed by Mario Carneiro, 12-Feb-2015)

Ref Expression
Hypotheses pi1xfr.p P = J π 1 F 0
pi1xfr.q Q = J π 1 F 1
pi1xfr.b B = Base P
pi1xfr.g G = ran g B g ph J I * 𝑝 J g * 𝑝 J F ph J
pi1xfr.j φ J TopOn X
pi1xfr.f φ F II Cn J
pi1xfr.i I = x 0 1 F 1 x
Assertion pi1xfr φ G P GrpHom Q

Proof

Step Hyp Ref Expression
1 pi1xfr.p P = J π 1 F 0
2 pi1xfr.q Q = J π 1 F 1
3 pi1xfr.b B = Base P
4 pi1xfr.g G = ran g B g ph J I * 𝑝 J g * 𝑝 J F ph J
5 pi1xfr.j φ J TopOn X
6 pi1xfr.f φ F II Cn J
7 pi1xfr.i I = x 0 1 F 1 x
8 iitopon II TopOn 0 1
9 cnf2 II TopOn 0 1 J TopOn X F II Cn J F : 0 1 X
10 8 5 6 9 mp3an2i φ F : 0 1 X
11 0elunit 0 0 1
12 ffvelrn F : 0 1 X 0 0 1 F 0 X
13 10 11 12 sylancl φ F 0 X
14 1 pi1grp J TopOn X F 0 X P Grp
15 5 13 14 syl2anc φ P Grp
16 1elunit 1 0 1
17 ffvelrn F : 0 1 X 1 0 1 F 1 X
18 10 16 17 sylancl φ F 1 X
19 2 pi1grp J TopOn X F 1 X Q Grp
20 5 18 19 syl2anc φ Q Grp
21 7 pcorevcl F II Cn J I II Cn J I 0 = F 1 I 1 = F 0
22 6 21 syl φ I II Cn J I 0 = F 1 I 1 = F 0
23 22 simp1d φ I II Cn J
24 22 simp2d φ I 0 = F 1
25 24 eqcomd φ F 1 = I 0
26 22 simp3d φ I 1 = F 0
27 1 2 3 4 5 6 23 25 26 pi1xfrf φ G : B Base Q
28 3 a1i φ B = Base P
29 1 5 13 28 pi1bas2 φ B = B / ph J
30 29 eleq2d φ y B y B / ph J
31 30 biimpa φ y B y B / ph J
32 eqid B / ph J = B / ph J
33 fvoveq1 f ph J = y G f ph J + P z = G y + P z
34 fveq2 f ph J = y G f ph J = G y
35 34 oveq1d f ph J = y G f ph J + Q G z = G y + Q G z
36 33 35 eqeq12d f ph J = y G f ph J + P z = G f ph J + Q G z G y + P z = G y + Q G z
37 36 ralbidv f ph J = y z B G f ph J + P z = G f ph J + Q G z z B G y + P z = G y + Q G z
38 29 eleq2d φ z B z B / ph J
39 38 biimpa φ z B z B / ph J
40 39 adantlr φ f B z B z B / ph J
41 oveq2 h ph J = z f ph J + P h ph J = f ph J + P z
42 41 fveq2d h ph J = z G f ph J + P h ph J = G f ph J + P z
43 fveq2 h ph J = z G h ph J = G z
44 43 oveq2d h ph J = z G f ph J + Q G h ph J = G f ph J + Q G z
45 42 44 eqeq12d h ph J = z G f ph J + P h ph J = G f ph J + Q G h ph J G f ph J + P z = G f ph J + Q G z
46 phtpcer ph J Er II Cn J
47 46 a1i φ f B h B ph J Er II Cn J
48 1 5 13 28 pi1eluni φ f B f II Cn J f 0 = F 0 f 1 = F 0
49 48 biimpa φ f B f II Cn J f 0 = F 0 f 1 = F 0
50 49 simp1d φ f B f II Cn J
51 50 3adant3 φ f B h B f II Cn J
52 1 5 13 28 pi1eluni φ h B h II Cn J h 0 = F 0 h 1 = F 0
53 52 adantr φ f B h B h II Cn J h 0 = F 0 h 1 = F 0
54 53 biimp3a φ f B h B h II Cn J h 0 = F 0 h 1 = F 0
55 54 simp1d φ f B h B h II Cn J
56 51 55 pco0 φ f B h B f * 𝑝 J h 0 = f 0
57 49 simp2d φ f B f 0 = F 0
58 57 3adant3 φ f B h B f 0 = F 0
59 56 58 eqtrd φ f B h B f * 𝑝 J h 0 = F 0
60 49 simp3d φ f B f 1 = F 0
61 60 3adant3 φ f B h B f 1 = F 0
62 54 simp2d φ f B h B h 0 = F 0
63 61 62 eqtr4d φ f B h B f 1 = h 0
64 51 55 63 pcocn φ f B h B f * 𝑝 J h II Cn J
65 6 3ad2ant1 φ f B h B F II Cn J
66 64 65 pco0 φ f B h B f * 𝑝 J h * 𝑝 J F 0 = f * 𝑝 J h 0
67 26 3ad2ant1 φ f B h B I 1 = F 0
68 59 66 67 3eqtr4rd φ f B h B I 1 = f * 𝑝 J h * 𝑝 J F 0
69 23 3ad2ant1 φ f B h B I II Cn J
70 47 69 erref φ f B h B I ph J I
71 54 simp3d φ f B h B h 1 = F 0
72 eqid u 0 1 if u 1 2 if u 1 4 2 u u + 1 4 u 2 + 1 2 = u 0 1 if u 1 2 if u 1 4 2 u u + 1 4 u 2 + 1 2
73 51 55 65 63 71 72 pcoass φ f B h B f * 𝑝 J h * 𝑝 J F ph J f * 𝑝 J h * 𝑝 J F
74 55 65 pco0 φ f B h B h * 𝑝 J F 0 = h 0
75 63 74 eqtr4d φ f B h B f 1 = h * 𝑝 J F 0
76 47 51 erref φ f B h B f ph J f
77 65 69 pco1 φ f B h B F * 𝑝 J I 1 = I 1
78 62 74 67 3eqtr4rd φ f B h B I 1 = h * 𝑝 J F 0
79 77 78 eqtrd φ f B h B F * 𝑝 J I 1 = h * 𝑝 J F 0
80 eqid 0 1 × F 0 = 0 1 × F 0
81 7 80 pcorev2 F II Cn J F * 𝑝 J I ph J 0 1 × F 0
82 65 81 syl φ f B h B F * 𝑝 J I ph J 0 1 × F 0
83 55 65 71 pcocn φ f B h B h * 𝑝 J F II Cn J
84 47 83 erref φ f B h B h * 𝑝 J F ph J h * 𝑝 J F
85 79 82 84 pcohtpy φ f B h B F * 𝑝 J I * 𝑝 J h * 𝑝 J F ph J 0 1 × F 0 * 𝑝 J h * 𝑝 J F
86 74 62 eqtrd φ f B h B h * 𝑝 J F 0 = F 0
87 80 pcopt h * 𝑝 J F II Cn J h * 𝑝 J F 0 = F 0 0 1 × F 0 * 𝑝 J h * 𝑝 J F ph J h * 𝑝 J F
88 83 86 87 syl2anc φ f B h B 0 1 × F 0 * 𝑝 J h * 𝑝 J F ph J h * 𝑝 J F
89 47 85 88 ertrd φ f B h B F * 𝑝 J I * 𝑝 J h * 𝑝 J F ph J h * 𝑝 J F
90 24 3ad2ant1 φ f B h B I 0 = F 1
91 90 eqcomd φ f B h B F 1 = I 0
92 65 69 83 91 78 72 pcoass φ f B h B F * 𝑝 J I * 𝑝 J h * 𝑝 J F ph J F * 𝑝 J I * 𝑝 J h * 𝑝 J F
93 47 89 92 ertr3d φ f B h B h * 𝑝 J F ph J F * 𝑝 J I * 𝑝 J h * 𝑝 J F
94 75 76 93 pcohtpy φ f B h B f * 𝑝 J h * 𝑝 J F ph J f * 𝑝 J F * 𝑝 J I * 𝑝 J h * 𝑝 J F
95 69 83 78 pcocn φ f B h B I * 𝑝 J h * 𝑝 J F II Cn J
96 69 83 pco0 φ f B h B I * 𝑝 J h * 𝑝 J F 0 = I 0
97 96 90 eqtrd φ f B h B I * 𝑝 J h * 𝑝 J F 0 = F 1
98 97 eqcomd φ f B h B F 1 = I * 𝑝 J h * 𝑝 J F 0
99 51 65 95 61 98 72 pcoass φ f B h B f * 𝑝 J F * 𝑝 J I * 𝑝 J h * 𝑝 J F ph J f * 𝑝 J F * 𝑝 J I * 𝑝 J h * 𝑝 J F
100 47 94 99 ertr4d φ f B h B f * 𝑝 J h * 𝑝 J F ph J f * 𝑝 J F * 𝑝 J I * 𝑝 J h * 𝑝 J F
101 47 73 100 ertrd φ f B h B f * 𝑝 J h * 𝑝 J F ph J f * 𝑝 J F * 𝑝 J I * 𝑝 J h * 𝑝 J F
102 68 70 101 pcohtpy φ f B h B I * 𝑝 J f * 𝑝 J h * 𝑝 J F ph J I * 𝑝 J f * 𝑝 J F * 𝑝 J I * 𝑝 J h * 𝑝 J F
103 6 adantr φ f B F II Cn J
104 50 103 60 pcocn φ f B f * 𝑝 J F II Cn J
105 104 3adant3 φ f B h B f * 𝑝 J F II Cn J
106 50 103 pco0 φ f B f * 𝑝 J F 0 = f 0
107 26 adantr φ f B I 1 = F 0
108 57 106 107 3eqtr4rd φ f B I 1 = f * 𝑝 J F 0
109 108 3adant3 φ f B h B I 1 = f * 𝑝 J F 0
110 51 65 pco1 φ f B h B f * 𝑝 J F 1 = F 1
111 110 97 eqtr4d φ f B h B f * 𝑝 J F 1 = I * 𝑝 J h * 𝑝 J F 0
112 69 105 95 109 111 72 pcoass φ f B h B I * 𝑝 J f * 𝑝 J F * 𝑝 J I * 𝑝 J h * 𝑝 J F ph J I * 𝑝 J f * 𝑝 J F * 𝑝 J I * 𝑝 J h * 𝑝 J F
113 47 102 112 ertr4d φ f B h B I * 𝑝 J f * 𝑝 J h * 𝑝 J F ph J I * 𝑝 J f * 𝑝 J F * 𝑝 J I * 𝑝 J h * 𝑝 J F
114 47 113 erthi φ f B h B I * 𝑝 J f * 𝑝 J h * 𝑝 J F ph J = I * 𝑝 J f * 𝑝 J F * 𝑝 J I * 𝑝 J h * 𝑝 J F ph J
115 5 3ad2ant1 φ f B h B J TopOn X
116 51 55 pco1 φ f B h B f * 𝑝 J h 1 = h 1
117 116 71 eqtrd φ f B h B f * 𝑝 J h 1 = F 0
118 1 5 13 28 pi1eluni φ f * 𝑝 J h B f * 𝑝 J h II Cn J f * 𝑝 J h 0 = F 0 f * 𝑝 J h 1 = F 0
119 118 3ad2ant1 φ f B h B f * 𝑝 J h B f * 𝑝 J h II Cn J f * 𝑝 J h 0 = F 0 f * 𝑝 J h 1 = F 0
120 64 59 117 119 mpbir3and φ f B h B f * 𝑝 J h B
121 1 2 3 4 115 65 69 91 67 120 pi1xfrval φ f B h B G f * 𝑝 J h ph J = I * 𝑝 J f * 𝑝 J h * 𝑝 J F ph J
122 eqid Base Q = Base Q
123 18 3ad2ant1 φ f B h B F 1 X
124 eqid + Q = + Q
125 23 adantr φ f B I II Cn J
126 125 104 108 pcocn φ f B I * 𝑝 J f * 𝑝 J F II Cn J
127 126 3adant3 φ f B h B I * 𝑝 J f * 𝑝 J F II Cn J
128 125 104 pco0 φ f B I * 𝑝 J f * 𝑝 J F 0 = I 0
129 24 adantr φ f B I 0 = F 1
130 128 129 eqtrd φ f B I * 𝑝 J f * 𝑝 J F 0 = F 1
131 130 3adant3 φ f B h B I * 𝑝 J f * 𝑝 J F 0 = F 1
132 125 104 pco1 φ f B I * 𝑝 J f * 𝑝 J F 1 = f * 𝑝 J F 1
133 50 103 pco1 φ f B f * 𝑝 J F 1 = F 1
134 132 133 eqtrd φ f B I * 𝑝 J f * 𝑝 J F 1 = F 1
135 134 3adant3 φ f B h B I * 𝑝 J f * 𝑝 J F 1 = F 1
136 eqidd φ f B h B Base Q = Base Q
137 2 115 123 136 pi1eluni φ f B h B I * 𝑝 J f * 𝑝 J F Base Q I * 𝑝 J f * 𝑝 J F II Cn J I * 𝑝 J f * 𝑝 J F 0 = F 1 I * 𝑝 J f * 𝑝 J F 1 = F 1
138 127 131 135 137 mpbir3and φ f B h B I * 𝑝 J f * 𝑝 J F Base Q
139 69 83 pco1 φ f B h B I * 𝑝 J h * 𝑝 J F 1 = h * 𝑝 J F 1
140 55 65 pco1 φ f B h B h * 𝑝 J F 1 = F 1
141 139 140 eqtrd φ f B h B I * 𝑝 J h * 𝑝 J F 1 = F 1
142 2 115 123 136 pi1eluni φ f B h B I * 𝑝 J h * 𝑝 J F Base Q I * 𝑝 J h * 𝑝 J F II Cn J I * 𝑝 J h * 𝑝 J F 0 = F 1 I * 𝑝 J h * 𝑝 J F 1 = F 1
143 95 97 141 142 mpbir3and φ f B h B I * 𝑝 J h * 𝑝 J F Base Q
144 2 122 115 123 124 138 143 pi1addval φ f B h B I * 𝑝 J f * 𝑝 J F ph J + Q I * 𝑝 J h * 𝑝 J F ph J = I * 𝑝 J f * 𝑝 J F * 𝑝 J I * 𝑝 J h * 𝑝 J F ph J
145 114 121 144 3eqtr4d φ f B h B G f * 𝑝 J h ph J = I * 𝑝 J f * 𝑝 J F ph J + Q I * 𝑝 J h * 𝑝 J F ph J
146 13 3ad2ant1 φ f B h B F 0 X
147 eqid + P = + P
148 simp2 φ f B h B f B
149 simp3 φ f B h B h B
150 1 3 115 146 147 148 149 pi1addval φ f B h B f ph J + P h ph J = f * 𝑝 J h ph J
151 150 fveq2d φ f B h B G f ph J + P h ph J = G f * 𝑝 J h ph J
152 5 adantr φ f B J TopOn X
153 25 adantr φ f B F 1 = I 0
154 simpr φ f B f B
155 1 2 3 4 152 103 125 153 107 154 pi1xfrval φ f B G f ph J = I * 𝑝 J f * 𝑝 J F ph J
156 155 3adant3 φ f B h B G f ph J = I * 𝑝 J f * 𝑝 J F ph J
157 1 2 3 4 115 65 69 91 67 149 pi1xfrval φ f B h B G h ph J = I * 𝑝 J h * 𝑝 J F ph J
158 156 157 oveq12d φ f B h B G f ph J + Q G h ph J = I * 𝑝 J f * 𝑝 J F ph J + Q I * 𝑝 J h * 𝑝 J F ph J
159 145 151 158 3eqtr4d φ f B h B G f ph J + P h ph J = G f ph J + Q G h ph J
160 159 3expa φ f B h B G f ph J + P h ph J = G f ph J + Q G h ph J
161 32 45 160 ectocld φ f B z B / ph J G f ph J + P z = G f ph J + Q G z
162 40 161 syldan φ f B z B G f ph J + P z = G f ph J + Q G z
163 162 ralrimiva φ f B z B G f ph J + P z = G f ph J + Q G z
164 32 37 163 ectocld φ y B / ph J z B G y + P z = G y + Q G z
165 31 164 syldan φ y B z B G y + P z = G y + Q G z
166 165 ralrimiva φ y B z B G y + P z = G y + Q G z
167 27 166 jca φ G : B Base Q y B z B G y + P z = G y + Q G z
168 3 122 147 124 isghm G P GrpHom Q P Grp Q Grp G : B Base Q y B z B G y + P z = G y + Q G z
169 15 20 167 168 syl21anbrc φ G P GrpHom Q