Step |
Hyp |
Ref |
Expression |
1 |
|
pi1xfr.p |
⊢ 𝑃 = ( 𝐽 π1 ( 𝐹 ‘ 0 ) ) |
2 |
|
pi1xfr.q |
⊢ 𝑄 = ( 𝐽 π1 ( 𝐹 ‘ 1 ) ) |
3 |
|
pi1xfr.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
pi1xfr.g |
⊢ 𝐺 = ran ( 𝑔 ∈ ∪ 𝐵 ↦ 〈 [ 𝑔 ] ( ≃ph ‘ 𝐽 ) , [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) 〉 ) |
5 |
|
pi1xfr.j |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
6 |
|
pi1xfr.f |
⊢ ( 𝜑 → 𝐹 ∈ ( II Cn 𝐽 ) ) |
7 |
|
pi1xfr.i |
⊢ 𝐼 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 1 − 𝑥 ) ) ) |
8 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
9 |
|
cnf2 |
⊢ ( ( II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( II Cn 𝐽 ) ) → 𝐹 : ( 0 [,] 1 ) ⟶ 𝑋 ) |
10 |
8 5 6 9
|
mp3an2i |
⊢ ( 𝜑 → 𝐹 : ( 0 [,] 1 ) ⟶ 𝑋 ) |
11 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
12 |
|
ffvelrn |
⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ 𝑋 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ 0 ) ∈ 𝑋 ) |
13 |
10 11 12
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ∈ 𝑋 ) |
14 |
1
|
pi1grp |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐹 ‘ 0 ) ∈ 𝑋 ) → 𝑃 ∈ Grp ) |
15 |
5 13 14
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
16 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
17 |
|
ffvelrn |
⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ 𝑋 ∧ 1 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ 1 ) ∈ 𝑋 ) |
18 |
10 16 17
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ∈ 𝑋 ) |
19 |
2
|
pi1grp |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐹 ‘ 1 ) ∈ 𝑋 ) → 𝑄 ∈ Grp ) |
20 |
5 18 19
|
syl2anc |
⊢ ( 𝜑 → 𝑄 ∈ Grp ) |
21 |
7
|
pcorevcl |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝐼 ∈ ( II Cn 𝐽 ) ∧ ( 𝐼 ‘ 0 ) = ( 𝐹 ‘ 1 ) ∧ ( 𝐼 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
22 |
6 21
|
syl |
⊢ ( 𝜑 → ( 𝐼 ∈ ( II Cn 𝐽 ) ∧ ( 𝐼 ‘ 0 ) = ( 𝐹 ‘ 1 ) ∧ ( 𝐼 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
23 |
22
|
simp1d |
⊢ ( 𝜑 → 𝐼 ∈ ( II Cn 𝐽 ) ) |
24 |
22
|
simp2d |
⊢ ( 𝜑 → ( 𝐼 ‘ 0 ) = ( 𝐹 ‘ 1 ) ) |
25 |
24
|
eqcomd |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = ( 𝐼 ‘ 0 ) ) |
26 |
22
|
simp3d |
⊢ ( 𝜑 → ( 𝐼 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) |
27 |
1 2 3 4 5 6 23 25 26
|
pi1xfrf |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ ( Base ‘ 𝑄 ) ) |
28 |
3
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑃 ) ) |
29 |
1 5 13 28
|
pi1bas2 |
⊢ ( 𝜑 → 𝐵 = ( ∪ 𝐵 / ( ≃ph ‘ 𝐽 ) ) ) |
30 |
29
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ( ∪ 𝐵 / ( ≃ph ‘ 𝐽 ) ) ) ) |
31 |
30
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ( ∪ 𝐵 / ( ≃ph ‘ 𝐽 ) ) ) |
32 |
|
eqid |
⊢ ( ∪ 𝐵 / ( ≃ph ‘ 𝐽 ) ) = ( ∪ 𝐵 / ( ≃ph ‘ 𝐽 ) ) |
33 |
|
fvoveq1 |
⊢ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) = 𝑦 → ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) 𝑧 ) ) = ( 𝐺 ‘ ( 𝑦 ( +g ‘ 𝑃 ) 𝑧 ) ) ) |
34 |
|
fveq2 |
⊢ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) = 𝑦 → ( 𝐺 ‘ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) = ( 𝐺 ‘ 𝑦 ) ) |
35 |
34
|
oveq1d |
⊢ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) = 𝑦 → ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) = ( ( 𝐺 ‘ 𝑦 ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) |
36 |
33 35
|
eqeq12d |
⊢ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) = 𝑦 → ( ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ↔ ( 𝐺 ‘ ( 𝑦 ( +g ‘ 𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ 𝑦 ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) ) |
37 |
36
|
ralbidv |
⊢ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) = 𝑦 → ( ∀ 𝑧 ∈ 𝐵 ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( 𝐺 ‘ ( 𝑦 ( +g ‘ 𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ 𝑦 ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) ) |
38 |
29
|
eleq2d |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐵 ↔ 𝑧 ∈ ( ∪ 𝐵 / ( ≃ph ‘ 𝐽 ) ) ) ) |
39 |
38
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ ( ∪ 𝐵 / ( ≃ph ‘ 𝐽 ) ) ) |
40 |
39
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ ( ∪ 𝐵 / ( ≃ph ‘ 𝐽 ) ) ) |
41 |
|
oveq2 |
⊢ ( [ ℎ ] ( ≃ph ‘ 𝐽 ) = 𝑧 → ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) [ ℎ ] ( ≃ph ‘ 𝐽 ) ) = ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) 𝑧 ) ) |
42 |
41
|
fveq2d |
⊢ ( [ ℎ ] ( ≃ph ‘ 𝐽 ) = 𝑧 → ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) = ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) 𝑧 ) ) ) |
43 |
|
fveq2 |
⊢ ( [ ℎ ] ( ≃ph ‘ 𝐽 ) = 𝑧 → ( 𝐺 ‘ [ ℎ ] ( ≃ph ‘ 𝐽 ) ) = ( 𝐺 ‘ 𝑧 ) ) |
44 |
43
|
oveq2d |
⊢ ( [ ℎ ] ( ≃ph ‘ 𝐽 ) = 𝑧 → ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) = ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) |
45 |
42 44
|
eqeq12d |
⊢ ( [ ℎ ] ( ≃ph ‘ 𝐽 ) = 𝑧 → ( ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) = ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) ↔ ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) ) |
46 |
|
phtpcer |
⊢ ( ≃ph ‘ 𝐽 ) Er ( II Cn 𝐽 ) |
47 |
46
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ≃ph ‘ 𝐽 ) Er ( II Cn 𝐽 ) ) |
48 |
1 5 13 28
|
pi1eluni |
⊢ ( 𝜑 → ( 𝑓 ∈ ∪ 𝐵 ↔ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 0 ) ∧ ( 𝑓 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) ) |
49 |
48
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ) → ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 0 ) ∧ ( 𝑓 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
50 |
49
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ) → 𝑓 ∈ ( II Cn 𝐽 ) ) |
51 |
50
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → 𝑓 ∈ ( II Cn 𝐽 ) ) |
52 |
1 5 13 28
|
pi1eluni |
⊢ ( 𝜑 → ( ℎ ∈ ∪ 𝐵 ↔ ( ℎ ∈ ( II Cn 𝐽 ) ∧ ( ℎ ‘ 0 ) = ( 𝐹 ‘ 0 ) ∧ ( ℎ ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) ) |
53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ) → ( ℎ ∈ ∪ 𝐵 ↔ ( ℎ ∈ ( II Cn 𝐽 ) ∧ ( ℎ ‘ 0 ) = ( 𝐹 ‘ 0 ) ∧ ( ℎ ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) ) |
54 |
53
|
biimp3a |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ℎ ∈ ( II Cn 𝐽 ) ∧ ( ℎ ‘ 0 ) = ( 𝐹 ‘ 0 ) ∧ ( ℎ ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
55 |
54
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ℎ ∈ ( II Cn 𝐽 ) ) |
56 |
51 55
|
pco0 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ‘ 0 ) = ( 𝑓 ‘ 0 ) ) |
57 |
49
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ) → ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 0 ) ) |
58 |
57
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 0 ) ) |
59 |
56 58
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ‘ 0 ) = ( 𝐹 ‘ 0 ) ) |
60 |
49
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ) → ( 𝑓 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) |
61 |
60
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( 𝑓 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) |
62 |
54
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ℎ ‘ 0 ) = ( 𝐹 ‘ 0 ) ) |
63 |
61 62
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( 𝑓 ‘ 1 ) = ( ℎ ‘ 0 ) ) |
64 |
51 55 63
|
pcocn |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ∈ ( II Cn 𝐽 ) ) |
65 |
6
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → 𝐹 ∈ ( II Cn 𝐽 ) ) |
66 |
64 65
|
pco0 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 0 ) = ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ‘ 0 ) ) |
67 |
26
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( 𝐼 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) |
68 |
59 66 67
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( 𝐼 ‘ 1 ) = ( ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 0 ) ) |
69 |
23
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → 𝐼 ∈ ( II Cn 𝐽 ) ) |
70 |
47 69
|
erref |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → 𝐼 ( ≃ph ‘ 𝐽 ) 𝐼 ) |
71 |
54
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ℎ ‘ 1 ) = ( 𝐹 ‘ 0 ) ) |
72 |
|
eqid |
⊢ ( 𝑢 ∈ ( 0 [,] 1 ) ↦ if ( 𝑢 ≤ ( 1 / 2 ) , if ( 𝑢 ≤ ( 1 / 4 ) , ( 2 · 𝑢 ) , ( 𝑢 + ( 1 / 4 ) ) ) , ( ( 𝑢 / 2 ) + ( 1 / 2 ) ) ) ) = ( 𝑢 ∈ ( 0 [,] 1 ) ↦ if ( 𝑢 ≤ ( 1 / 2 ) , if ( 𝑢 ≤ ( 1 / 4 ) , ( 2 · 𝑢 ) , ( 𝑢 + ( 1 / 4 ) ) ) , ( ( 𝑢 / 2 ) + ( 1 / 2 ) ) ) ) |
73 |
51 55 65 63 71 72
|
pcoass |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ( *𝑝 ‘ 𝐽 ) 𝐹 ) ( ≃ph ‘ 𝐽 ) ( 𝑓 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ) |
74 |
55 65
|
pco0 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 0 ) = ( ℎ ‘ 0 ) ) |
75 |
63 74
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( 𝑓 ‘ 1 ) = ( ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 0 ) ) |
76 |
47 51
|
erref |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → 𝑓 ( ≃ph ‘ 𝐽 ) 𝑓 ) |
77 |
65 69
|
pco1 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐼 ) ‘ 1 ) = ( 𝐼 ‘ 1 ) ) |
78 |
62 74 67
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( 𝐼 ‘ 1 ) = ( ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 0 ) ) |
79 |
77 78
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐼 ) ‘ 1 ) = ( ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 0 ) ) |
80 |
|
eqid |
⊢ ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) = ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) |
81 |
7 80
|
pcorev2 |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐼 ) ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ) |
82 |
65 81
|
syl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐼 ) ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ) |
83 |
55 65 71
|
pcocn |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ∈ ( II Cn 𝐽 ) ) |
84 |
47 83
|
erref |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ( ≃ph ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) |
85 |
79 82 84
|
pcohtpy |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐼 ) ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ( ≃ph ‘ 𝐽 ) ( ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ) |
86 |
74 62
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 0 ) = ( 𝐹 ‘ 0 ) ) |
87 |
80
|
pcopt |
⊢ ( ( ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ∈ ( II Cn 𝐽 ) ∧ ( ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 0 ) = ( 𝐹 ‘ 0 ) ) → ( ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ( ≃ph ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) |
88 |
83 86 87
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ( ≃ph ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) |
89 |
47 85 88
|
ertrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐼 ) ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ( ≃ph ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) |
90 |
24
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( 𝐼 ‘ 0 ) = ( 𝐹 ‘ 1 ) ) |
91 |
90
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( 𝐹 ‘ 1 ) = ( 𝐼 ‘ 0 ) ) |
92 |
65 69 83 91 78 72
|
pcoass |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐼 ) ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ( ≃ph ‘ 𝐽 ) ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ) ) |
93 |
47 89 92
|
ertr3d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ( ≃ph ‘ 𝐽 ) ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ) ) |
94 |
75 76 93
|
pcohtpy |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( 𝑓 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ( ≃ph ‘ 𝐽 ) ( 𝑓 ( *𝑝 ‘ 𝐽 ) ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ) ) ) |
95 |
69 83 78
|
pcocn |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ∈ ( II Cn 𝐽 ) ) |
96 |
69 83
|
pco0 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ‘ 0 ) = ( 𝐼 ‘ 0 ) ) |
97 |
96 90
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ‘ 0 ) = ( 𝐹 ‘ 1 ) ) |
98 |
97
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( 𝐹 ‘ 1 ) = ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ‘ 0 ) ) |
99 |
51 65 95 61 98 72
|
pcoass |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ( *𝑝 ‘ 𝐽 ) ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ) ( ≃ph ‘ 𝐽 ) ( 𝑓 ( *𝑝 ‘ 𝐽 ) ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ) ) ) |
100 |
47 94 99
|
ertr4d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( 𝑓 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ( ≃ph ‘ 𝐽 ) ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ( *𝑝 ‘ 𝐽 ) ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ) ) |
101 |
47 73 100
|
ertrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ( *𝑝 ‘ 𝐽 ) 𝐹 ) ( ≃ph ‘ 𝐽 ) ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ( *𝑝 ‘ 𝐽 ) ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ) ) |
102 |
68 70 101
|
pcohtpy |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ( ≃ph ‘ 𝐽 ) ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ( *𝑝 ‘ 𝐽 ) ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ) ) ) |
103 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ) → 𝐹 ∈ ( II Cn 𝐽 ) ) |
104 |
50 103 60
|
pcocn |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ) → ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ∈ ( II Cn 𝐽 ) ) |
105 |
104
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ∈ ( II Cn 𝐽 ) ) |
106 |
50 103
|
pco0 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ) → ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 0 ) = ( 𝑓 ‘ 0 ) ) |
107 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ) → ( 𝐼 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) |
108 |
57 106 107
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ) → ( 𝐼 ‘ 1 ) = ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 0 ) ) |
109 |
108
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( 𝐼 ‘ 1 ) = ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 0 ) ) |
110 |
51 65
|
pco1 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
111 |
110 97
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 1 ) = ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ‘ 0 ) ) |
112 |
69 105 95 109 111 72
|
pcoass |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ( *𝑝 ‘ 𝐽 ) ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ) ( ≃ph ‘ 𝐽 ) ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ( *𝑝 ‘ 𝐽 ) ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ) ) ) |
113 |
47 102 112
|
ertr4d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ( ≃ph ‘ 𝐽 ) ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ( *𝑝 ‘ 𝐽 ) ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ) ) |
114 |
47 113
|
erthi |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) = [ ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ( *𝑝 ‘ 𝐽 ) ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ) ] ( ≃ph ‘ 𝐽 ) ) |
115 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
116 |
51 55
|
pco1 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ‘ 1 ) = ( ℎ ‘ 1 ) ) |
117 |
116 71
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ‘ 1 ) = ( 𝐹 ‘ 0 ) ) |
118 |
1 5 13 28
|
pi1eluni |
⊢ ( 𝜑 → ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ∈ ∪ 𝐵 ↔ ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ‘ 0 ) = ( 𝐹 ‘ 0 ) ∧ ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) ) |
119 |
118
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ∈ ∪ 𝐵 ↔ ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ‘ 0 ) = ( 𝐹 ‘ 0 ) ∧ ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) ) |
120 |
64 59 117 119
|
mpbir3and |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ∈ ∪ 𝐵 ) |
121 |
1 2 3 4 115 65 69 91 67 120
|
pi1xfrval |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( 𝐺 ‘ [ ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ] ( ≃ph ‘ 𝐽 ) ) = [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) ) |
122 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
123 |
18
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( 𝐹 ‘ 1 ) ∈ 𝑋 ) |
124 |
|
eqid |
⊢ ( +g ‘ 𝑄 ) = ( +g ‘ 𝑄 ) |
125 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ) → 𝐼 ∈ ( II Cn 𝐽 ) ) |
126 |
125 104 108
|
pcocn |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ) → ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ∈ ( II Cn 𝐽 ) ) |
127 |
126
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ∈ ( II Cn 𝐽 ) ) |
128 |
125 104
|
pco0 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ) → ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ‘ 0 ) = ( 𝐼 ‘ 0 ) ) |
129 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ) → ( 𝐼 ‘ 0 ) = ( 𝐹 ‘ 1 ) ) |
130 |
128 129
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ) → ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ‘ 0 ) = ( 𝐹 ‘ 1 ) ) |
131 |
130
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ‘ 0 ) = ( 𝐹 ‘ 1 ) ) |
132 |
125 104
|
pco1 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ) → ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ‘ 1 ) = ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 1 ) ) |
133 |
50 103
|
pco1 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ) → ( ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
134 |
132 133
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ) → ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
135 |
134
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
136 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) ) |
137 |
2 115 123 136
|
pi1eluni |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ∈ ∪ ( Base ‘ 𝑄 ) ↔ ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ∈ ( II Cn 𝐽 ) ∧ ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ‘ 0 ) = ( 𝐹 ‘ 1 ) ∧ ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) ) ) |
138 |
127 131 135 137
|
mpbir3and |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ∈ ∪ ( Base ‘ 𝑄 ) ) |
139 |
69 83
|
pco1 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ‘ 1 ) = ( ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 1 ) ) |
140 |
55 65
|
pco1 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
141 |
139 140
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
142 |
2 115 123 136
|
pi1eluni |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ∈ ∪ ( Base ‘ 𝑄 ) ↔ ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ∈ ( II Cn 𝐽 ) ∧ ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ‘ 0 ) = ( 𝐹 ‘ 1 ) ∧ ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) ) ) |
143 |
95 97 141 142
|
mpbir3and |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ∈ ∪ ( Base ‘ 𝑄 ) ) |
144 |
2 122 115 123 124 138 143
|
pi1addval |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑄 ) [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) ) = [ ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ( *𝑝 ‘ 𝐽 ) ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ) ] ( ≃ph ‘ 𝐽 ) ) |
145 |
114 121 144
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( 𝐺 ‘ [ ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ] ( ≃ph ‘ 𝐽 ) ) = ( [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑄 ) [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) ) ) |
146 |
13
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( 𝐹 ‘ 0 ) ∈ 𝑋 ) |
147 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
148 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → 𝑓 ∈ ∪ 𝐵 ) |
149 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ℎ ∈ ∪ 𝐵 ) |
150 |
1 3 115 146 147 148 149
|
pi1addval |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) [ ℎ ] ( ≃ph ‘ 𝐽 ) ) = [ ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ] ( ≃ph ‘ 𝐽 ) ) |
151 |
150
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) = ( 𝐺 ‘ [ ( 𝑓 ( *𝑝 ‘ 𝐽 ) ℎ ) ] ( ≃ph ‘ 𝐽 ) ) ) |
152 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
153 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ) → ( 𝐹 ‘ 1 ) = ( 𝐼 ‘ 0 ) ) |
154 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ) → 𝑓 ∈ ∪ 𝐵 ) |
155 |
1 2 3 4 152 103 125 153 107 154
|
pi1xfrval |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ) → ( 𝐺 ‘ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) = [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) ) |
156 |
155
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( 𝐺 ‘ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) = [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) ) |
157 |
1 2 3 4 115 65 69 91 67 149
|
pi1xfrval |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( 𝐺 ‘ [ ℎ ] ( ≃ph ‘ 𝐽 ) ) = [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) ) |
158 |
156 157
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) = ( [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑓 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑄 ) [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) ) ) |
159 |
145 151 158
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ) → ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) = ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) ) |
160 |
159
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ) ∧ ℎ ∈ ∪ 𝐵 ) → ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) = ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) ) |
161 |
32 45 160
|
ectocld |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ) ∧ 𝑧 ∈ ( ∪ 𝐵 / ( ≃ph ‘ 𝐽 ) ) ) → ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) |
162 |
40 161
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) |
163 |
162
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ∪ 𝐵 ) → ∀ 𝑧 ∈ 𝐵 ( 𝐺 ‘ ( [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) |
164 |
32 37 163
|
ectocld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ∪ 𝐵 / ( ≃ph ‘ 𝐽 ) ) ) → ∀ 𝑧 ∈ 𝐵 ( 𝐺 ‘ ( 𝑦 ( +g ‘ 𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ 𝑦 ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) |
165 |
31 164
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ∀ 𝑧 ∈ 𝐵 ( 𝐺 ‘ ( 𝑦 ( +g ‘ 𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ 𝑦 ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) |
166 |
165
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐺 ‘ ( 𝑦 ( +g ‘ 𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ 𝑦 ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) |
167 |
27 166
|
jca |
⊢ ( 𝜑 → ( 𝐺 : 𝐵 ⟶ ( Base ‘ 𝑄 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐺 ‘ ( 𝑦 ( +g ‘ 𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ 𝑦 ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) ) |
168 |
3 122 147 124
|
isghm |
⊢ ( 𝐺 ∈ ( 𝑃 GrpHom 𝑄 ) ↔ ( ( 𝑃 ∈ Grp ∧ 𝑄 ∈ Grp ) ∧ ( 𝐺 : 𝐵 ⟶ ( Base ‘ 𝑄 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐺 ‘ ( 𝑦 ( +g ‘ 𝑃 ) 𝑧 ) ) = ( ( 𝐺 ‘ 𝑦 ) ( +g ‘ 𝑄 ) ( 𝐺 ‘ 𝑧 ) ) ) ) ) |
169 |
15 20 167 168
|
syl21anbrc |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑃 GrpHom 𝑄 ) ) |