| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pi1xfr.p |
⊢ 𝑃 = ( 𝐽 π1 ( 𝐹 ‘ 0 ) ) |
| 2 |
|
pi1xfr.q |
⊢ 𝑄 = ( 𝐽 π1 ( 𝐹 ‘ 1 ) ) |
| 3 |
|
pi1xfr.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 4 |
|
pi1xfr.g |
⊢ 𝐺 = ran ( 𝑔 ∈ ∪ 𝐵 ↦ 〈 [ 𝑔 ] ( ≃ph ‘ 𝐽 ) , [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) 〉 ) |
| 5 |
|
pi1xfr.j |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 6 |
|
pi1xfr.f |
⊢ ( 𝜑 → 𝐹 ∈ ( II Cn 𝐽 ) ) |
| 7 |
|
pi1xfr.i |
⊢ 𝐼 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 1 − 𝑥 ) ) ) |
| 8 |
|
pi1xfrcnv.h |
⊢ 𝐻 = ran ( ℎ ∈ ∪ ( Base ‘ 𝑄 ) ↦ 〈 [ ℎ ] ( ≃ph ‘ 𝐽 ) , [ ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) ] ( ≃ph ‘ 𝐽 ) 〉 ) |
| 9 |
|
fvex |
⊢ ( ≃ph ‘ 𝐽 ) ∈ V |
| 10 |
|
ecexg |
⊢ ( ( ≃ph ‘ 𝐽 ) ∈ V → [ 𝑔 ] ( ≃ph ‘ 𝐽 ) ∈ V ) |
| 11 |
9 10
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → [ 𝑔 ] ( ≃ph ‘ 𝐽 ) ∈ V ) |
| 12 |
|
ecexg |
⊢ ( ( ≃ph ‘ 𝐽 ) ∈ V → [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) ∈ V ) |
| 13 |
9 12
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) ∈ V ) |
| 14 |
4 11 13
|
fliftcnv |
⊢ ( 𝜑 → ◡ 𝐺 = ran ( 𝑔 ∈ ∪ 𝐵 ↦ 〈 [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) , [ 𝑔 ] ( ≃ph ‘ 𝐽 ) 〉 ) ) |
| 15 |
7
|
pcorevcl |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝐼 ∈ ( II Cn 𝐽 ) ∧ ( 𝐼 ‘ 0 ) = ( 𝐹 ‘ 1 ) ∧ ( 𝐼 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
| 16 |
6 15
|
syl |
⊢ ( 𝜑 → ( 𝐼 ∈ ( II Cn 𝐽 ) ∧ ( 𝐼 ‘ 0 ) = ( 𝐹 ‘ 1 ) ∧ ( 𝐼 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
| 17 |
16
|
simp1d |
⊢ ( 𝜑 → 𝐼 ∈ ( II Cn 𝐽 ) ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → 𝐼 ∈ ( II Cn 𝐽 ) ) |
| 19 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
| 20 |
|
cnf2 |
⊢ ( ( II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( II Cn 𝐽 ) ) → 𝐹 : ( 0 [,] 1 ) ⟶ 𝑋 ) |
| 21 |
19 5 6 20
|
mp3an2i |
⊢ ( 𝜑 → 𝐹 : ( 0 [,] 1 ) ⟶ 𝑋 ) |
| 22 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
| 23 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ 𝑋 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ 0 ) ∈ 𝑋 ) |
| 24 |
21 22 23
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ∈ 𝑋 ) |
| 25 |
3
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑃 ) ) |
| 26 |
1 5 24 25
|
pi1eluni |
⊢ ( 𝜑 → ( 𝑔 ∈ ∪ 𝐵 ↔ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( 𝑔 ‘ 0 ) = ( 𝐹 ‘ 0 ) ∧ ( 𝑔 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) ) |
| 27 |
26
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( 𝑔 ‘ 0 ) = ( 𝐹 ‘ 0 ) ∧ ( 𝑔 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
| 28 |
27
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → 𝑔 ∈ ( II Cn 𝐽 ) ) |
| 29 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → 𝐹 ∈ ( II Cn 𝐽 ) ) |
| 30 |
27
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝑔 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) |
| 31 |
28 29 30
|
pcocn |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ∈ ( II Cn 𝐽 ) ) |
| 32 |
16
|
simp3d |
⊢ ( 𝜑 → ( 𝐼 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝐼 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) |
| 34 |
27
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝑔 ‘ 0 ) = ( 𝐹 ‘ 0 ) ) |
| 35 |
33 34
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝐼 ‘ 1 ) = ( 𝑔 ‘ 0 ) ) |
| 36 |
28 29
|
pco0 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 0 ) = ( 𝑔 ‘ 0 ) ) |
| 37 |
35 36
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝐼 ‘ 1 ) = ( ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 0 ) ) |
| 38 |
18 31 37
|
pcocn |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ∈ ( II Cn 𝐽 ) ) |
| 39 |
18 31
|
pco0 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ‘ 0 ) = ( 𝐼 ‘ 0 ) ) |
| 40 |
16
|
simp2d |
⊢ ( 𝜑 → ( 𝐼 ‘ 0 ) = ( 𝐹 ‘ 1 ) ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝐼 ‘ 0 ) = ( 𝐹 ‘ 1 ) ) |
| 42 |
39 41
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ‘ 0 ) = ( 𝐹 ‘ 1 ) ) |
| 43 |
18 31
|
pco1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ‘ 1 ) = ( ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 1 ) ) |
| 44 |
28 29
|
pco1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
| 45 |
43 44
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
| 46 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
| 47 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ 𝑋 ∧ 1 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ 1 ) ∈ 𝑋 ) |
| 48 |
21 46 47
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ∈ 𝑋 ) |
| 49 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) ) |
| 50 |
2 5 48 49
|
pi1eluni |
⊢ ( 𝜑 → ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ∈ ∪ ( Base ‘ 𝑄 ) ↔ ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ∈ ( II Cn 𝐽 ) ∧ ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ‘ 0 ) = ( 𝐹 ‘ 1 ) ∧ ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) ) ) |
| 51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ∈ ∪ ( Base ‘ 𝑄 ) ↔ ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ∈ ( II Cn 𝐽 ) ∧ ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ‘ 0 ) = ( 𝐹 ‘ 1 ) ∧ ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) ) ) |
| 52 |
38 42 45 51
|
mpbir3and |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ∈ ∪ ( Base ‘ 𝑄 ) ) |
| 53 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑔 ∈ ∪ 𝐵 ↦ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ) = ( 𝑔 ∈ ∪ 𝐵 ↦ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ) ) |
| 54 |
|
eqidd |
⊢ ( 𝜑 → ( ℎ ∈ ∪ ( Base ‘ 𝑄 ) ↦ 〈 [ ℎ ] ( ≃ph ‘ 𝐽 ) , [ ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) ] ( ≃ph ‘ 𝐽 ) 〉 ) = ( ℎ ∈ ∪ ( Base ‘ 𝑄 ) ↦ 〈 [ ℎ ] ( ≃ph ‘ 𝐽 ) , [ ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) ] ( ≃ph ‘ 𝐽 ) 〉 ) ) |
| 55 |
|
eceq1 |
⊢ ( ℎ = ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) → [ ℎ ] ( ≃ph ‘ 𝐽 ) = [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) ) |
| 56 |
|
oveq1 |
⊢ ( ℎ = ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) → ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐼 ) = ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) |
| 57 |
56
|
oveq2d |
⊢ ( ℎ = ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) → ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) = ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) ) |
| 58 |
57
|
eceq1d |
⊢ ( ℎ = ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) → [ ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) ] ( ≃ph ‘ 𝐽 ) = [ ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) ] ( ≃ph ‘ 𝐽 ) ) |
| 59 |
55 58
|
opeq12d |
⊢ ( ℎ = ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) → 〈 [ ℎ ] ( ≃ph ‘ 𝐽 ) , [ ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) ] ( ≃ph ‘ 𝐽 ) 〉 = 〈 [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) , [ ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) ] ( ≃ph ‘ 𝐽 ) 〉 ) |
| 60 |
52 53 54 59
|
fmptco |
⊢ ( 𝜑 → ( ( ℎ ∈ ∪ ( Base ‘ 𝑄 ) ↦ 〈 [ ℎ ] ( ≃ph ‘ 𝐽 ) , [ ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) ] ( ≃ph ‘ 𝐽 ) 〉 ) ∘ ( 𝑔 ∈ ∪ 𝐵 ↦ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ) ) = ( 𝑔 ∈ ∪ 𝐵 ↦ 〈 [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) , [ ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) ] ( ≃ph ‘ 𝐽 ) 〉 ) ) |
| 61 |
|
phtpcer |
⊢ ( ≃ph ‘ 𝐽 ) Er ( II Cn 𝐽 ) |
| 62 |
61
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( ≃ph ‘ 𝐽 ) Er ( II Cn 𝐽 ) ) |
| 63 |
18 28
|
pco0 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) 𝑔 ) ‘ 0 ) = ( 𝐼 ‘ 0 ) ) |
| 64 |
63 41
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝐹 ‘ 1 ) = ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) 𝑔 ) ‘ 0 ) ) |
| 65 |
62 29
|
erref |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → 𝐹 ( ≃ph ‘ 𝐽 ) 𝐹 ) |
| 66 |
62 18
|
erref |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → 𝐼 ( ≃ph ‘ 𝐽 ) 𝐼 ) |
| 67 |
|
eqid |
⊢ ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) = ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) |
| 68 |
67
|
pcopt2 |
⊢ ( ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( 𝑔 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) → ( 𝑔 ( *𝑝 ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ) ( ≃ph ‘ 𝐽 ) 𝑔 ) |
| 69 |
28 30 68
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝑔 ( *𝑝 ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ) ( ≃ph ‘ 𝐽 ) 𝑔 ) |
| 70 |
41
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝐹 ‘ 1 ) = ( 𝐼 ‘ 0 ) ) |
| 71 |
|
eqid |
⊢ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , if ( 𝑥 ≤ ( 1 / 4 ) , ( 2 · 𝑥 ) , ( 𝑥 + ( 1 / 4 ) ) ) , ( ( 𝑥 / 2 ) + ( 1 / 2 ) ) ) ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , if ( 𝑥 ≤ ( 1 / 4 ) , ( 2 · 𝑥 ) , ( 𝑥 + ( 1 / 4 ) ) ) , ( ( 𝑥 / 2 ) + ( 1 / 2 ) ) ) ) |
| 72 |
28 29 18 30 70 71
|
pcoass |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ( *𝑝 ‘ 𝐽 ) 𝐼 ) ( ≃ph ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) ) |
| 73 |
29 18
|
pco0 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐼 ) ‘ 0 ) = ( 𝐹 ‘ 0 ) ) |
| 74 |
30 73
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝑔 ‘ 1 ) = ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐼 ) ‘ 0 ) ) |
| 75 |
62 28
|
erref |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → 𝑔 ( ≃ph ‘ 𝐽 ) 𝑔 ) |
| 76 |
7 67
|
pcorev2 |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐼 ) ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ) |
| 77 |
29 76
|
syl |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐼 ) ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ) |
| 78 |
74 75 77
|
pcohtpy |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝑔 ( *𝑝 ‘ 𝐽 ) ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) ( ≃ph ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ) ) |
| 79 |
62 72 78
|
ertr2d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝑔 ( *𝑝 ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ) ( ≃ph ‘ 𝐽 ) ( ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) |
| 80 |
62 69 79
|
ertr3d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → 𝑔 ( ≃ph ‘ 𝐽 ) ( ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) |
| 81 |
35 66 80
|
pcohtpy |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝐼 ( *𝑝 ‘ 𝐽 ) 𝑔 ) ( ≃ph ‘ 𝐽 ) ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) ) |
| 82 |
44 41
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 1 ) = ( 𝐼 ‘ 0 ) ) |
| 83 |
18 31 18 37 82 71
|
pcoass |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ( *𝑝 ‘ 𝐽 ) 𝐼 ) ( ≃ph ‘ 𝐽 ) ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) ) |
| 84 |
62 81 83
|
ertr4d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝐼 ( *𝑝 ‘ 𝐽 ) 𝑔 ) ( ≃ph ‘ 𝐽 ) ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) |
| 85 |
64 65 84
|
pcohtpy |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝐼 ( *𝑝 ‘ 𝐽 ) 𝑔 ) ) ( ≃ph ‘ 𝐽 ) ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) ) |
| 86 |
29 18 28 70 35 71
|
pcoass |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐼 ) ( *𝑝 ‘ 𝐽 ) 𝑔 ) ( ≃ph ‘ 𝐽 ) ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝐼 ( *𝑝 ‘ 𝐽 ) 𝑔 ) ) ) |
| 87 |
29 18
|
pco1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐼 ) ‘ 1 ) = ( 𝐼 ‘ 1 ) ) |
| 88 |
87 35
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐼 ) ‘ 1 ) = ( 𝑔 ‘ 0 ) ) |
| 89 |
88 77 75
|
pcohtpy |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐼 ) ( *𝑝 ‘ 𝐽 ) 𝑔 ) ( ≃ph ‘ 𝐽 ) ( ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ( *𝑝 ‘ 𝐽 ) 𝑔 ) ) |
| 90 |
67
|
pcopt |
⊢ ( ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( 𝑔 ‘ 0 ) = ( 𝐹 ‘ 0 ) ) → ( ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ( *𝑝 ‘ 𝐽 ) 𝑔 ) ( ≃ph ‘ 𝐽 ) 𝑔 ) |
| 91 |
28 34 90
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ( *𝑝 ‘ 𝐽 ) 𝑔 ) ( ≃ph ‘ 𝐽 ) 𝑔 ) |
| 92 |
62 89 91
|
ertrd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐼 ) ( *𝑝 ‘ 𝐽 ) 𝑔 ) ( ≃ph ‘ 𝐽 ) 𝑔 ) |
| 93 |
62 86 92
|
ertr3d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( 𝐼 ( *𝑝 ‘ 𝐽 ) 𝑔 ) ) ( ≃ph ‘ 𝐽 ) 𝑔 ) |
| 94 |
62 85 93
|
ertr3d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) ( ≃ph ‘ 𝐽 ) 𝑔 ) |
| 95 |
62 94
|
erthi |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → [ ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) ] ( ≃ph ‘ 𝐽 ) = [ 𝑔 ] ( ≃ph ‘ 𝐽 ) ) |
| 96 |
95
|
opeq2d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → 〈 [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) , [ ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) ] ( ≃ph ‘ 𝐽 ) 〉 = 〈 [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) , [ 𝑔 ] ( ≃ph ‘ 𝐽 ) 〉 ) |
| 97 |
96
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑔 ∈ ∪ 𝐵 ↦ 〈 [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) , [ ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) ] ( ≃ph ‘ 𝐽 ) 〉 ) = ( 𝑔 ∈ ∪ 𝐵 ↦ 〈 [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) , [ 𝑔 ] ( ≃ph ‘ 𝐽 ) 〉 ) ) |
| 98 |
60 97
|
eqtrd |
⊢ ( 𝜑 → ( ( ℎ ∈ ∪ ( Base ‘ 𝑄 ) ↦ 〈 [ ℎ ] ( ≃ph ‘ 𝐽 ) , [ ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) ] ( ≃ph ‘ 𝐽 ) 〉 ) ∘ ( 𝑔 ∈ ∪ 𝐵 ↦ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ) ) = ( 𝑔 ∈ ∪ 𝐵 ↦ 〈 [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) , [ 𝑔 ] ( ≃ph ‘ 𝐽 ) 〉 ) ) |
| 99 |
98
|
rneqd |
⊢ ( 𝜑 → ran ( ( ℎ ∈ ∪ ( Base ‘ 𝑄 ) ↦ 〈 [ ℎ ] ( ≃ph ‘ 𝐽 ) , [ ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) ] ( ≃ph ‘ 𝐽 ) 〉 ) ∘ ( 𝑔 ∈ ∪ 𝐵 ↦ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ) ) = ran ( 𝑔 ∈ ∪ 𝐵 ↦ 〈 [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) , [ 𝑔 ] ( ≃ph ‘ 𝐽 ) 〉 ) ) |
| 100 |
14 99
|
eqtr4d |
⊢ ( 𝜑 → ◡ 𝐺 = ran ( ( ℎ ∈ ∪ ( Base ‘ 𝑄 ) ↦ 〈 [ ℎ ] ( ≃ph ‘ 𝐽 ) , [ ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) ] ( ≃ph ‘ 𝐽 ) 〉 ) ∘ ( 𝑔 ∈ ∪ 𝐵 ↦ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ) ) ) |
| 101 |
|
rncoss |
⊢ ran ( ( ℎ ∈ ∪ ( Base ‘ 𝑄 ) ↦ 〈 [ ℎ ] ( ≃ph ‘ 𝐽 ) , [ ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) ] ( ≃ph ‘ 𝐽 ) 〉 ) ∘ ( 𝑔 ∈ ∪ 𝐵 ↦ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ) ) ⊆ ran ( ℎ ∈ ∪ ( Base ‘ 𝑄 ) ↦ 〈 [ ℎ ] ( ≃ph ‘ 𝐽 ) , [ ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) ] ( ≃ph ‘ 𝐽 ) 〉 ) |
| 102 |
101 8
|
sseqtrri |
⊢ ran ( ( ℎ ∈ ∪ ( Base ‘ 𝑄 ) ↦ 〈 [ ℎ ] ( ≃ph ‘ 𝐽 ) , [ ( 𝐹 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐼 ) ) ] ( ≃ph ‘ 𝐽 ) 〉 ) ∘ ( 𝑔 ∈ ∪ 𝐵 ↦ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ) ) ⊆ 𝐻 |
| 103 |
100 102
|
eqsstrdi |
⊢ ( 𝜑 → ◡ 𝐺 ⊆ 𝐻 ) |