Step |
Hyp |
Ref |
Expression |
1 |
|
pi1xfr.p |
|- P = ( J pi1 ( F ` 0 ) ) |
2 |
|
pi1xfr.q |
|- Q = ( J pi1 ( F ` 1 ) ) |
3 |
|
pi1xfr.b |
|- B = ( Base ` P ) |
4 |
|
pi1xfr.g |
|- G = ran ( g e. U. B |-> <. [ g ] ( ~=ph ` J ) , [ ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ] ( ~=ph ` J ) >. ) |
5 |
|
pi1xfr.j |
|- ( ph -> J e. ( TopOn ` X ) ) |
6 |
|
pi1xfr.f |
|- ( ph -> F e. ( II Cn J ) ) |
7 |
|
pi1xfr.i |
|- I = ( x e. ( 0 [,] 1 ) |-> ( F ` ( 1 - x ) ) ) |
8 |
|
pi1xfrcnv.h |
|- H = ran ( h e. U. ( Base ` Q ) |-> <. [ h ] ( ~=ph ` J ) , [ ( F ( *p ` J ) ( h ( *p ` J ) I ) ) ] ( ~=ph ` J ) >. ) |
9 |
|
fvex |
|- ( ~=ph ` J ) e. _V |
10 |
|
ecexg |
|- ( ( ~=ph ` J ) e. _V -> [ g ] ( ~=ph ` J ) e. _V ) |
11 |
9 10
|
mp1i |
|- ( ( ph /\ g e. U. B ) -> [ g ] ( ~=ph ` J ) e. _V ) |
12 |
|
ecexg |
|- ( ( ~=ph ` J ) e. _V -> [ ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ] ( ~=ph ` J ) e. _V ) |
13 |
9 12
|
mp1i |
|- ( ( ph /\ g e. U. B ) -> [ ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ] ( ~=ph ` J ) e. _V ) |
14 |
4 11 13
|
fliftcnv |
|- ( ph -> `' G = ran ( g e. U. B |-> <. [ ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ] ( ~=ph ` J ) , [ g ] ( ~=ph ` J ) >. ) ) |
15 |
7
|
pcorevcl |
|- ( F e. ( II Cn J ) -> ( I e. ( II Cn J ) /\ ( I ` 0 ) = ( F ` 1 ) /\ ( I ` 1 ) = ( F ` 0 ) ) ) |
16 |
6 15
|
syl |
|- ( ph -> ( I e. ( II Cn J ) /\ ( I ` 0 ) = ( F ` 1 ) /\ ( I ` 1 ) = ( F ` 0 ) ) ) |
17 |
16
|
simp1d |
|- ( ph -> I e. ( II Cn J ) ) |
18 |
17
|
adantr |
|- ( ( ph /\ g e. U. B ) -> I e. ( II Cn J ) ) |
19 |
|
iitopon |
|- II e. ( TopOn ` ( 0 [,] 1 ) ) |
20 |
|
cnf2 |
|- ( ( II e. ( TopOn ` ( 0 [,] 1 ) ) /\ J e. ( TopOn ` X ) /\ F e. ( II Cn J ) ) -> F : ( 0 [,] 1 ) --> X ) |
21 |
19 5 6 20
|
mp3an2i |
|- ( ph -> F : ( 0 [,] 1 ) --> X ) |
22 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
23 |
|
ffvelrn |
|- ( ( F : ( 0 [,] 1 ) --> X /\ 0 e. ( 0 [,] 1 ) ) -> ( F ` 0 ) e. X ) |
24 |
21 22 23
|
sylancl |
|- ( ph -> ( F ` 0 ) e. X ) |
25 |
3
|
a1i |
|- ( ph -> B = ( Base ` P ) ) |
26 |
1 5 24 25
|
pi1eluni |
|- ( ph -> ( g e. U. B <-> ( g e. ( II Cn J ) /\ ( g ` 0 ) = ( F ` 0 ) /\ ( g ` 1 ) = ( F ` 0 ) ) ) ) |
27 |
26
|
biimpa |
|- ( ( ph /\ g e. U. B ) -> ( g e. ( II Cn J ) /\ ( g ` 0 ) = ( F ` 0 ) /\ ( g ` 1 ) = ( F ` 0 ) ) ) |
28 |
27
|
simp1d |
|- ( ( ph /\ g e. U. B ) -> g e. ( II Cn J ) ) |
29 |
6
|
adantr |
|- ( ( ph /\ g e. U. B ) -> F e. ( II Cn J ) ) |
30 |
27
|
simp3d |
|- ( ( ph /\ g e. U. B ) -> ( g ` 1 ) = ( F ` 0 ) ) |
31 |
28 29 30
|
pcocn |
|- ( ( ph /\ g e. U. B ) -> ( g ( *p ` J ) F ) e. ( II Cn J ) ) |
32 |
16
|
simp3d |
|- ( ph -> ( I ` 1 ) = ( F ` 0 ) ) |
33 |
32
|
adantr |
|- ( ( ph /\ g e. U. B ) -> ( I ` 1 ) = ( F ` 0 ) ) |
34 |
27
|
simp2d |
|- ( ( ph /\ g e. U. B ) -> ( g ` 0 ) = ( F ` 0 ) ) |
35 |
33 34
|
eqtr4d |
|- ( ( ph /\ g e. U. B ) -> ( I ` 1 ) = ( g ` 0 ) ) |
36 |
28 29
|
pco0 |
|- ( ( ph /\ g e. U. B ) -> ( ( g ( *p ` J ) F ) ` 0 ) = ( g ` 0 ) ) |
37 |
35 36
|
eqtr4d |
|- ( ( ph /\ g e. U. B ) -> ( I ` 1 ) = ( ( g ( *p ` J ) F ) ` 0 ) ) |
38 |
18 31 37
|
pcocn |
|- ( ( ph /\ g e. U. B ) -> ( I ( *p ` J ) ( g ( *p ` J ) F ) ) e. ( II Cn J ) ) |
39 |
18 31
|
pco0 |
|- ( ( ph /\ g e. U. B ) -> ( ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ` 0 ) = ( I ` 0 ) ) |
40 |
16
|
simp2d |
|- ( ph -> ( I ` 0 ) = ( F ` 1 ) ) |
41 |
40
|
adantr |
|- ( ( ph /\ g e. U. B ) -> ( I ` 0 ) = ( F ` 1 ) ) |
42 |
39 41
|
eqtrd |
|- ( ( ph /\ g e. U. B ) -> ( ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ` 0 ) = ( F ` 1 ) ) |
43 |
18 31
|
pco1 |
|- ( ( ph /\ g e. U. B ) -> ( ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ` 1 ) = ( ( g ( *p ` J ) F ) ` 1 ) ) |
44 |
28 29
|
pco1 |
|- ( ( ph /\ g e. U. B ) -> ( ( g ( *p ` J ) F ) ` 1 ) = ( F ` 1 ) ) |
45 |
43 44
|
eqtrd |
|- ( ( ph /\ g e. U. B ) -> ( ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ` 1 ) = ( F ` 1 ) ) |
46 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
47 |
|
ffvelrn |
|- ( ( F : ( 0 [,] 1 ) --> X /\ 1 e. ( 0 [,] 1 ) ) -> ( F ` 1 ) e. X ) |
48 |
21 46 47
|
sylancl |
|- ( ph -> ( F ` 1 ) e. X ) |
49 |
|
eqidd |
|- ( ph -> ( Base ` Q ) = ( Base ` Q ) ) |
50 |
2 5 48 49
|
pi1eluni |
|- ( ph -> ( ( I ( *p ` J ) ( g ( *p ` J ) F ) ) e. U. ( Base ` Q ) <-> ( ( I ( *p ` J ) ( g ( *p ` J ) F ) ) e. ( II Cn J ) /\ ( ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ` 0 ) = ( F ` 1 ) /\ ( ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ` 1 ) = ( F ` 1 ) ) ) ) |
51 |
50
|
adantr |
|- ( ( ph /\ g e. U. B ) -> ( ( I ( *p ` J ) ( g ( *p ` J ) F ) ) e. U. ( Base ` Q ) <-> ( ( I ( *p ` J ) ( g ( *p ` J ) F ) ) e. ( II Cn J ) /\ ( ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ` 0 ) = ( F ` 1 ) /\ ( ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ` 1 ) = ( F ` 1 ) ) ) ) |
52 |
38 42 45 51
|
mpbir3and |
|- ( ( ph /\ g e. U. B ) -> ( I ( *p ` J ) ( g ( *p ` J ) F ) ) e. U. ( Base ` Q ) ) |
53 |
|
eqidd |
|- ( ph -> ( g e. U. B |-> ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ) = ( g e. U. B |-> ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ) ) |
54 |
|
eqidd |
|- ( ph -> ( h e. U. ( Base ` Q ) |-> <. [ h ] ( ~=ph ` J ) , [ ( F ( *p ` J ) ( h ( *p ` J ) I ) ) ] ( ~=ph ` J ) >. ) = ( h e. U. ( Base ` Q ) |-> <. [ h ] ( ~=ph ` J ) , [ ( F ( *p ` J ) ( h ( *p ` J ) I ) ) ] ( ~=ph ` J ) >. ) ) |
55 |
|
eceq1 |
|- ( h = ( I ( *p ` J ) ( g ( *p ` J ) F ) ) -> [ h ] ( ~=ph ` J ) = [ ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ] ( ~=ph ` J ) ) |
56 |
|
oveq1 |
|- ( h = ( I ( *p ` J ) ( g ( *p ` J ) F ) ) -> ( h ( *p ` J ) I ) = ( ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ( *p ` J ) I ) ) |
57 |
56
|
oveq2d |
|- ( h = ( I ( *p ` J ) ( g ( *p ` J ) F ) ) -> ( F ( *p ` J ) ( h ( *p ` J ) I ) ) = ( F ( *p ` J ) ( ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ( *p ` J ) I ) ) ) |
58 |
57
|
eceq1d |
|- ( h = ( I ( *p ` J ) ( g ( *p ` J ) F ) ) -> [ ( F ( *p ` J ) ( h ( *p ` J ) I ) ) ] ( ~=ph ` J ) = [ ( F ( *p ` J ) ( ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ( *p ` J ) I ) ) ] ( ~=ph ` J ) ) |
59 |
55 58
|
opeq12d |
|- ( h = ( I ( *p ` J ) ( g ( *p ` J ) F ) ) -> <. [ h ] ( ~=ph ` J ) , [ ( F ( *p ` J ) ( h ( *p ` J ) I ) ) ] ( ~=ph ` J ) >. = <. [ ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ] ( ~=ph ` J ) , [ ( F ( *p ` J ) ( ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ( *p ` J ) I ) ) ] ( ~=ph ` J ) >. ) |
60 |
52 53 54 59
|
fmptco |
|- ( ph -> ( ( h e. U. ( Base ` Q ) |-> <. [ h ] ( ~=ph ` J ) , [ ( F ( *p ` J ) ( h ( *p ` J ) I ) ) ] ( ~=ph ` J ) >. ) o. ( g e. U. B |-> ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ) ) = ( g e. U. B |-> <. [ ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ] ( ~=ph ` J ) , [ ( F ( *p ` J ) ( ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ( *p ` J ) I ) ) ] ( ~=ph ` J ) >. ) ) |
61 |
|
phtpcer |
|- ( ~=ph ` J ) Er ( II Cn J ) |
62 |
61
|
a1i |
|- ( ( ph /\ g e. U. B ) -> ( ~=ph ` J ) Er ( II Cn J ) ) |
63 |
18 28
|
pco0 |
|- ( ( ph /\ g e. U. B ) -> ( ( I ( *p ` J ) g ) ` 0 ) = ( I ` 0 ) ) |
64 |
63 41
|
eqtr2d |
|- ( ( ph /\ g e. U. B ) -> ( F ` 1 ) = ( ( I ( *p ` J ) g ) ` 0 ) ) |
65 |
62 29
|
erref |
|- ( ( ph /\ g e. U. B ) -> F ( ~=ph ` J ) F ) |
66 |
62 18
|
erref |
|- ( ( ph /\ g e. U. B ) -> I ( ~=ph ` J ) I ) |
67 |
|
eqid |
|- ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) = ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) |
68 |
67
|
pcopt2 |
|- ( ( g e. ( II Cn J ) /\ ( g ` 1 ) = ( F ` 0 ) ) -> ( g ( *p ` J ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) ( ~=ph ` J ) g ) |
69 |
28 30 68
|
syl2anc |
|- ( ( ph /\ g e. U. B ) -> ( g ( *p ` J ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) ( ~=ph ` J ) g ) |
70 |
41
|
eqcomd |
|- ( ( ph /\ g e. U. B ) -> ( F ` 1 ) = ( I ` 0 ) ) |
71 |
|
eqid |
|- ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , if ( x <_ ( 1 / 4 ) , ( 2 x. x ) , ( x + ( 1 / 4 ) ) ) , ( ( x / 2 ) + ( 1 / 2 ) ) ) ) = ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , if ( x <_ ( 1 / 4 ) , ( 2 x. x ) , ( x + ( 1 / 4 ) ) ) , ( ( x / 2 ) + ( 1 / 2 ) ) ) ) |
72 |
28 29 18 30 70 71
|
pcoass |
|- ( ( ph /\ g e. U. B ) -> ( ( g ( *p ` J ) F ) ( *p ` J ) I ) ( ~=ph ` J ) ( g ( *p ` J ) ( F ( *p ` J ) I ) ) ) |
73 |
29 18
|
pco0 |
|- ( ( ph /\ g e. U. B ) -> ( ( F ( *p ` J ) I ) ` 0 ) = ( F ` 0 ) ) |
74 |
30 73
|
eqtr4d |
|- ( ( ph /\ g e. U. B ) -> ( g ` 1 ) = ( ( F ( *p ` J ) I ) ` 0 ) ) |
75 |
62 28
|
erref |
|- ( ( ph /\ g e. U. B ) -> g ( ~=ph ` J ) g ) |
76 |
7 67
|
pcorev2 |
|- ( F e. ( II Cn J ) -> ( F ( *p ` J ) I ) ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) |
77 |
29 76
|
syl |
|- ( ( ph /\ g e. U. B ) -> ( F ( *p ` J ) I ) ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) |
78 |
74 75 77
|
pcohtpy |
|- ( ( ph /\ g e. U. B ) -> ( g ( *p ` J ) ( F ( *p ` J ) I ) ) ( ~=ph ` J ) ( g ( *p ` J ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) ) |
79 |
62 72 78
|
ertr2d |
|- ( ( ph /\ g e. U. B ) -> ( g ( *p ` J ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) ( ~=ph ` J ) ( ( g ( *p ` J ) F ) ( *p ` J ) I ) ) |
80 |
62 69 79
|
ertr3d |
|- ( ( ph /\ g e. U. B ) -> g ( ~=ph ` J ) ( ( g ( *p ` J ) F ) ( *p ` J ) I ) ) |
81 |
35 66 80
|
pcohtpy |
|- ( ( ph /\ g e. U. B ) -> ( I ( *p ` J ) g ) ( ~=ph ` J ) ( I ( *p ` J ) ( ( g ( *p ` J ) F ) ( *p ` J ) I ) ) ) |
82 |
44 41
|
eqtr4d |
|- ( ( ph /\ g e. U. B ) -> ( ( g ( *p ` J ) F ) ` 1 ) = ( I ` 0 ) ) |
83 |
18 31 18 37 82 71
|
pcoass |
|- ( ( ph /\ g e. U. B ) -> ( ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ( *p ` J ) I ) ( ~=ph ` J ) ( I ( *p ` J ) ( ( g ( *p ` J ) F ) ( *p ` J ) I ) ) ) |
84 |
62 81 83
|
ertr4d |
|- ( ( ph /\ g e. U. B ) -> ( I ( *p ` J ) g ) ( ~=ph ` J ) ( ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ( *p ` J ) I ) ) |
85 |
64 65 84
|
pcohtpy |
|- ( ( ph /\ g e. U. B ) -> ( F ( *p ` J ) ( I ( *p ` J ) g ) ) ( ~=ph ` J ) ( F ( *p ` J ) ( ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ( *p ` J ) I ) ) ) |
86 |
29 18 28 70 35 71
|
pcoass |
|- ( ( ph /\ g e. U. B ) -> ( ( F ( *p ` J ) I ) ( *p ` J ) g ) ( ~=ph ` J ) ( F ( *p ` J ) ( I ( *p ` J ) g ) ) ) |
87 |
29 18
|
pco1 |
|- ( ( ph /\ g e. U. B ) -> ( ( F ( *p ` J ) I ) ` 1 ) = ( I ` 1 ) ) |
88 |
87 35
|
eqtrd |
|- ( ( ph /\ g e. U. B ) -> ( ( F ( *p ` J ) I ) ` 1 ) = ( g ` 0 ) ) |
89 |
88 77 75
|
pcohtpy |
|- ( ( ph /\ g e. U. B ) -> ( ( F ( *p ` J ) I ) ( *p ` J ) g ) ( ~=ph ` J ) ( ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ( *p ` J ) g ) ) |
90 |
67
|
pcopt |
|- ( ( g e. ( II Cn J ) /\ ( g ` 0 ) = ( F ` 0 ) ) -> ( ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ( *p ` J ) g ) ( ~=ph ` J ) g ) |
91 |
28 34 90
|
syl2anc |
|- ( ( ph /\ g e. U. B ) -> ( ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ( *p ` J ) g ) ( ~=ph ` J ) g ) |
92 |
62 89 91
|
ertrd |
|- ( ( ph /\ g e. U. B ) -> ( ( F ( *p ` J ) I ) ( *p ` J ) g ) ( ~=ph ` J ) g ) |
93 |
62 86 92
|
ertr3d |
|- ( ( ph /\ g e. U. B ) -> ( F ( *p ` J ) ( I ( *p ` J ) g ) ) ( ~=ph ` J ) g ) |
94 |
62 85 93
|
ertr3d |
|- ( ( ph /\ g e. U. B ) -> ( F ( *p ` J ) ( ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ( *p ` J ) I ) ) ( ~=ph ` J ) g ) |
95 |
62 94
|
erthi |
|- ( ( ph /\ g e. U. B ) -> [ ( F ( *p ` J ) ( ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ( *p ` J ) I ) ) ] ( ~=ph ` J ) = [ g ] ( ~=ph ` J ) ) |
96 |
95
|
opeq2d |
|- ( ( ph /\ g e. U. B ) -> <. [ ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ] ( ~=ph ` J ) , [ ( F ( *p ` J ) ( ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ( *p ` J ) I ) ) ] ( ~=ph ` J ) >. = <. [ ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ] ( ~=ph ` J ) , [ g ] ( ~=ph ` J ) >. ) |
97 |
96
|
mpteq2dva |
|- ( ph -> ( g e. U. B |-> <. [ ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ] ( ~=ph ` J ) , [ ( F ( *p ` J ) ( ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ( *p ` J ) I ) ) ] ( ~=ph ` J ) >. ) = ( g e. U. B |-> <. [ ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ] ( ~=ph ` J ) , [ g ] ( ~=ph ` J ) >. ) ) |
98 |
60 97
|
eqtrd |
|- ( ph -> ( ( h e. U. ( Base ` Q ) |-> <. [ h ] ( ~=ph ` J ) , [ ( F ( *p ` J ) ( h ( *p ` J ) I ) ) ] ( ~=ph ` J ) >. ) o. ( g e. U. B |-> ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ) ) = ( g e. U. B |-> <. [ ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ] ( ~=ph ` J ) , [ g ] ( ~=ph ` J ) >. ) ) |
99 |
98
|
rneqd |
|- ( ph -> ran ( ( h e. U. ( Base ` Q ) |-> <. [ h ] ( ~=ph ` J ) , [ ( F ( *p ` J ) ( h ( *p ` J ) I ) ) ] ( ~=ph ` J ) >. ) o. ( g e. U. B |-> ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ) ) = ran ( g e. U. B |-> <. [ ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ] ( ~=ph ` J ) , [ g ] ( ~=ph ` J ) >. ) ) |
100 |
14 99
|
eqtr4d |
|- ( ph -> `' G = ran ( ( h e. U. ( Base ` Q ) |-> <. [ h ] ( ~=ph ` J ) , [ ( F ( *p ` J ) ( h ( *p ` J ) I ) ) ] ( ~=ph ` J ) >. ) o. ( g e. U. B |-> ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ) ) ) |
101 |
|
rncoss |
|- ran ( ( h e. U. ( Base ` Q ) |-> <. [ h ] ( ~=ph ` J ) , [ ( F ( *p ` J ) ( h ( *p ` J ) I ) ) ] ( ~=ph ` J ) >. ) o. ( g e. U. B |-> ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ) ) C_ ran ( h e. U. ( Base ` Q ) |-> <. [ h ] ( ~=ph ` J ) , [ ( F ( *p ` J ) ( h ( *p ` J ) I ) ) ] ( ~=ph ` J ) >. ) |
102 |
101 8
|
sseqtrri |
|- ran ( ( h e. U. ( Base ` Q ) |-> <. [ h ] ( ~=ph ` J ) , [ ( F ( *p ` J ) ( h ( *p ` J ) I ) ) ] ( ~=ph ` J ) >. ) o. ( g e. U. B |-> ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ) ) C_ H |
103 |
100 102
|
eqsstrdi |
|- ( ph -> `' G C_ H ) |