| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flift.1 |
|- F = ran ( x e. X |-> <. A , B >. ) |
| 2 |
|
flift.2 |
|- ( ( ph /\ x e. X ) -> A e. R ) |
| 3 |
|
flift.3 |
|- ( ( ph /\ x e. X ) -> B e. S ) |
| 4 |
|
eqid |
|- ran ( x e. X |-> <. B , A >. ) = ran ( x e. X |-> <. B , A >. ) |
| 5 |
4 3 2
|
fliftrel |
|- ( ph -> ran ( x e. X |-> <. B , A >. ) C_ ( S X. R ) ) |
| 6 |
|
relxp |
|- Rel ( S X. R ) |
| 7 |
|
relss |
|- ( ran ( x e. X |-> <. B , A >. ) C_ ( S X. R ) -> ( Rel ( S X. R ) -> Rel ran ( x e. X |-> <. B , A >. ) ) ) |
| 8 |
5 6 7
|
mpisyl |
|- ( ph -> Rel ran ( x e. X |-> <. B , A >. ) ) |
| 9 |
|
relcnv |
|- Rel `' F |
| 10 |
8 9
|
jctil |
|- ( ph -> ( Rel `' F /\ Rel ran ( x e. X |-> <. B , A >. ) ) ) |
| 11 |
1 2 3
|
fliftel |
|- ( ph -> ( z F y <-> E. x e. X ( z = A /\ y = B ) ) ) |
| 12 |
|
vex |
|- y e. _V |
| 13 |
|
vex |
|- z e. _V |
| 14 |
12 13
|
brcnv |
|- ( y `' F z <-> z F y ) |
| 15 |
|
ancom |
|- ( ( y = B /\ z = A ) <-> ( z = A /\ y = B ) ) |
| 16 |
15
|
rexbii |
|- ( E. x e. X ( y = B /\ z = A ) <-> E. x e. X ( z = A /\ y = B ) ) |
| 17 |
11 14 16
|
3bitr4g |
|- ( ph -> ( y `' F z <-> E. x e. X ( y = B /\ z = A ) ) ) |
| 18 |
4 3 2
|
fliftel |
|- ( ph -> ( y ran ( x e. X |-> <. B , A >. ) z <-> E. x e. X ( y = B /\ z = A ) ) ) |
| 19 |
17 18
|
bitr4d |
|- ( ph -> ( y `' F z <-> y ran ( x e. X |-> <. B , A >. ) z ) ) |
| 20 |
|
df-br |
|- ( y `' F z <-> <. y , z >. e. `' F ) |
| 21 |
|
df-br |
|- ( y ran ( x e. X |-> <. B , A >. ) z <-> <. y , z >. e. ran ( x e. X |-> <. B , A >. ) ) |
| 22 |
19 20 21
|
3bitr3g |
|- ( ph -> ( <. y , z >. e. `' F <-> <. y , z >. e. ran ( x e. X |-> <. B , A >. ) ) ) |
| 23 |
22
|
eqrelrdv2 |
|- ( ( ( Rel `' F /\ Rel ran ( x e. X |-> <. B , A >. ) ) /\ ph ) -> `' F = ran ( x e. X |-> <. B , A >. ) ) |
| 24 |
10 23
|
mpancom |
|- ( ph -> `' F = ran ( x e. X |-> <. B , A >. ) ) |