Metamath Proof Explorer


Theorem fliftcnv

Description: Converse of the relation F . (Contributed by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses flift.1 F = ran x X A B
flift.2 φ x X A R
flift.3 φ x X B S
Assertion fliftcnv φ F -1 = ran x X B A

Proof

Step Hyp Ref Expression
1 flift.1 F = ran x X A B
2 flift.2 φ x X A R
3 flift.3 φ x X B S
4 eqid ran x X B A = ran x X B A
5 4 3 2 fliftrel φ ran x X B A S × R
6 relxp Rel S × R
7 relss ran x X B A S × R Rel S × R Rel ran x X B A
8 5 6 7 mpisyl φ Rel ran x X B A
9 relcnv Rel F -1
10 8 9 jctil φ Rel F -1 Rel ran x X B A
11 1 2 3 fliftel φ z F y x X z = A y = B
12 vex y V
13 vex z V
14 12 13 brcnv y F -1 z z F y
15 ancom y = B z = A z = A y = B
16 15 rexbii x X y = B z = A x X z = A y = B
17 11 14 16 3bitr4g φ y F -1 z x X y = B z = A
18 4 3 2 fliftel φ y ran x X B A z x X y = B z = A
19 17 18 bitr4d φ y F -1 z y ran x X B A z
20 df-br y F -1 z y z F -1
21 df-br y ran x X B A z y z ran x X B A
22 19 20 21 3bitr3g φ y z F -1 y z ran x X B A
23 22 eqrelrdv2 Rel F -1 Rel ran x X B A φ F -1 = ran x X B A
24 10 23 mpancom φ F -1 = ran x X B A