Metamath Proof Explorer


Theorem pi1grp

Description: The fundamental group is a group. Proposition 1.3 of Hatcher p. 26. (Contributed by Jeff Madsen, 19-Jun-2010) (Proof shortened by Mario Carneiro, 8-Jun-2014) (Revised by Mario Carneiro, 10-Aug-2015)

Ref Expression
Hypothesis pi1grp.2 G = J π 1 Y
Assertion pi1grp J TopOn X Y X G Grp

Proof

Step Hyp Ref Expression
1 pi1grp.2 G = J π 1 Y
2 eqid Base G = Base G
3 simpl J TopOn X Y X J TopOn X
4 simpr J TopOn X Y X Y X
5 eqid 0 1 × Y = 0 1 × Y
6 1 2 3 4 5 pi1grplem J TopOn X Y X G Grp 0 1 × Y ph J = 0 G
7 6 simpld J TopOn X Y X G Grp