Metamath Proof Explorer


Theorem pi1grp

Description: The fundamental group is a group. Proposition 1.3 of Hatcher p. 26. (Contributed by Jeff Madsen, 19-Jun-2010) (Proof shortened by Mario Carneiro, 8-Jun-2014) (Revised by Mario Carneiro, 10-Aug-2015)

Ref Expression
Hypothesis pi1grp.2
|- G = ( J pi1 Y )
Assertion pi1grp
|- ( ( J e. ( TopOn ` X ) /\ Y e. X ) -> G e. Grp )

Proof

Step Hyp Ref Expression
1 pi1grp.2
 |-  G = ( J pi1 Y )
2 eqid
 |-  ( Base ` G ) = ( Base ` G )
3 simpl
 |-  ( ( J e. ( TopOn ` X ) /\ Y e. X ) -> J e. ( TopOn ` X ) )
4 simpr
 |-  ( ( J e. ( TopOn ` X ) /\ Y e. X ) -> Y e. X )
5 eqid
 |-  ( ( 0 [,] 1 ) X. { Y } ) = ( ( 0 [,] 1 ) X. { Y } )
6 1 2 3 4 5 pi1grplem
 |-  ( ( J e. ( TopOn ` X ) /\ Y e. X ) -> ( G e. Grp /\ [ ( ( 0 [,] 1 ) X. { Y } ) ] ( ~=ph ` J ) = ( 0g ` G ) ) )
7 6 simpld
 |-  ( ( J e. ( TopOn ` X ) /\ Y e. X ) -> G e. Grp )