Metamath Proof Explorer


Theorem pi1id

Description: The identity element of the fundamental group. (Contributed by Mario Carneiro, 12-Feb-2015) (Revised by Mario Carneiro, 10-Aug-2015)

Ref Expression
Hypotheses pi1grp.2
|- G = ( J pi1 Y )
pi1id.3
|- .0. = ( ( 0 [,] 1 ) X. { Y } )
Assertion pi1id
|- ( ( J e. ( TopOn ` X ) /\ Y e. X ) -> [ .0. ] ( ~=ph ` J ) = ( 0g ` G ) )

Proof

Step Hyp Ref Expression
1 pi1grp.2
 |-  G = ( J pi1 Y )
2 pi1id.3
 |-  .0. = ( ( 0 [,] 1 ) X. { Y } )
3 eqid
 |-  ( Base ` G ) = ( Base ` G )
4 simpl
 |-  ( ( J e. ( TopOn ` X ) /\ Y e. X ) -> J e. ( TopOn ` X ) )
5 simpr
 |-  ( ( J e. ( TopOn ` X ) /\ Y e. X ) -> Y e. X )
6 1 3 4 5 2 pi1grplem
 |-  ( ( J e. ( TopOn ` X ) /\ Y e. X ) -> ( G e. Grp /\ [ .0. ] ( ~=ph ` J ) = ( 0g ` G ) ) )
7 6 simprd
 |-  ( ( J e. ( TopOn ` X ) /\ Y e. X ) -> [ .0. ] ( ~=ph ` J ) = ( 0g ` G ) )