Description: The identity element of the fundamental group. (Contributed by Mario Carneiro, 12-Feb-2015) (Revised by Mario Carneiro, 10-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pi1grp.2 | |- G = ( J pi1 Y ) | |
| pi1id.3 | |- .0. = ( ( 0 [,] 1 ) X. { Y } ) | ||
| Assertion | pi1id | |- ( ( J e. ( TopOn ` X ) /\ Y e. X ) -> [ .0. ] ( ~=ph ` J ) = ( 0g ` G ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pi1grp.2 | |- G = ( J pi1 Y ) | |
| 2 | pi1id.3 |  |-  .0. = ( ( 0 [,] 1 ) X. { Y } ) | |
| 3 | eqid | |- ( Base ` G ) = ( Base ` G ) | |
| 4 | simpl | |- ( ( J e. ( TopOn ` X ) /\ Y e. X ) -> J e. ( TopOn ` X ) ) | |
| 5 | simpr | |- ( ( J e. ( TopOn ` X ) /\ Y e. X ) -> Y e. X ) | |
| 6 | 1 3 4 5 2 | pi1grplem | |- ( ( J e. ( TopOn ` X ) /\ Y e. X ) -> ( G e. Grp /\ [ .0. ] ( ~=ph ` J ) = ( 0g ` G ) ) ) | 
| 7 | 6 | simprd | |- ( ( J e. ( TopOn ` X ) /\ Y e. X ) -> [ .0. ] ( ~=ph ` J ) = ( 0g ` G ) ) |