Step |
Hyp |
Ref |
Expression |
1 |
|
pi1grp.2 |
|- G = ( J pi1 Y ) |
2 |
|
pi1inv.n |
|- N = ( invg ` G ) |
3 |
|
pi1inv.j |
|- ( ph -> J e. ( TopOn ` X ) ) |
4 |
|
pi1inv.y |
|- ( ph -> Y e. X ) |
5 |
|
pi1inv.f |
|- ( ph -> F e. ( II Cn J ) ) |
6 |
|
pi1inv.0 |
|- ( ph -> ( F ` 0 ) = Y ) |
7 |
|
pi1inv.1 |
|- ( ph -> ( F ` 1 ) = Y ) |
8 |
|
pi1inv.i |
|- I = ( x e. ( 0 [,] 1 ) |-> ( F ` ( 1 - x ) ) ) |
9 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
10 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
11 |
8
|
pcorevcl |
|- ( F e. ( II Cn J ) -> ( I e. ( II Cn J ) /\ ( I ` 0 ) = ( F ` 1 ) /\ ( I ` 1 ) = ( F ` 0 ) ) ) |
12 |
5 11
|
syl |
|- ( ph -> ( I e. ( II Cn J ) /\ ( I ` 0 ) = ( F ` 1 ) /\ ( I ` 1 ) = ( F ` 0 ) ) ) |
13 |
12
|
simp1d |
|- ( ph -> I e. ( II Cn J ) ) |
14 |
12
|
simp2d |
|- ( ph -> ( I ` 0 ) = ( F ` 1 ) ) |
15 |
14 7
|
eqtrd |
|- ( ph -> ( I ` 0 ) = Y ) |
16 |
12
|
simp3d |
|- ( ph -> ( I ` 1 ) = ( F ` 0 ) ) |
17 |
16 6
|
eqtrd |
|- ( ph -> ( I ` 1 ) = Y ) |
18 |
9
|
a1i |
|- ( ph -> ( Base ` G ) = ( Base ` G ) ) |
19 |
1 3 4 18
|
pi1eluni |
|- ( ph -> ( I e. U. ( Base ` G ) <-> ( I e. ( II Cn J ) /\ ( I ` 0 ) = Y /\ ( I ` 1 ) = Y ) ) ) |
20 |
13 15 17 19
|
mpbir3and |
|- ( ph -> I e. U. ( Base ` G ) ) |
21 |
1 3 4 18
|
pi1eluni |
|- ( ph -> ( F e. U. ( Base ` G ) <-> ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y /\ ( F ` 1 ) = Y ) ) ) |
22 |
5 6 7 21
|
mpbir3and |
|- ( ph -> F e. U. ( Base ` G ) ) |
23 |
1 9 3 4 10 20 22
|
pi1addval |
|- ( ph -> ( [ I ] ( ~=ph ` J ) ( +g ` G ) [ F ] ( ~=ph ` J ) ) = [ ( I ( *p ` J ) F ) ] ( ~=ph ` J ) ) |
24 |
|
phtpcer |
|- ( ~=ph ` J ) Er ( II Cn J ) |
25 |
24
|
a1i |
|- ( ph -> ( ~=ph ` J ) Er ( II Cn J ) ) |
26 |
|
eqid |
|- ( ( 0 [,] 1 ) X. { ( F ` 1 ) } ) = ( ( 0 [,] 1 ) X. { ( F ` 1 ) } ) |
27 |
8 26
|
pcorev |
|- ( F e. ( II Cn J ) -> ( I ( *p ` J ) F ) ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( F ` 1 ) } ) ) |
28 |
5 27
|
syl |
|- ( ph -> ( I ( *p ` J ) F ) ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( F ` 1 ) } ) ) |
29 |
7
|
sneqd |
|- ( ph -> { ( F ` 1 ) } = { Y } ) |
30 |
29
|
xpeq2d |
|- ( ph -> ( ( 0 [,] 1 ) X. { ( F ` 1 ) } ) = ( ( 0 [,] 1 ) X. { Y } ) ) |
31 |
28 30
|
breqtrd |
|- ( ph -> ( I ( *p ` J ) F ) ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { Y } ) ) |
32 |
25 31
|
erthi |
|- ( ph -> [ ( I ( *p ` J ) F ) ] ( ~=ph ` J ) = [ ( ( 0 [,] 1 ) X. { Y } ) ] ( ~=ph ` J ) ) |
33 |
|
eqid |
|- ( ( 0 [,] 1 ) X. { Y } ) = ( ( 0 [,] 1 ) X. { Y } ) |
34 |
1 9 3 4 33
|
pi1grplem |
|- ( ph -> ( G e. Grp /\ [ ( ( 0 [,] 1 ) X. { Y } ) ] ( ~=ph ` J ) = ( 0g ` G ) ) ) |
35 |
34
|
simprd |
|- ( ph -> [ ( ( 0 [,] 1 ) X. { Y } ) ] ( ~=ph ` J ) = ( 0g ` G ) ) |
36 |
23 32 35
|
3eqtrd |
|- ( ph -> ( [ I ] ( ~=ph ` J ) ( +g ` G ) [ F ] ( ~=ph ` J ) ) = ( 0g ` G ) ) |
37 |
34
|
simpld |
|- ( ph -> G e. Grp ) |
38 |
1 9 3 4 5 6 7
|
elpi1i |
|- ( ph -> [ F ] ( ~=ph ` J ) e. ( Base ` G ) ) |
39 |
1 9 3 4 13 15 17
|
elpi1i |
|- ( ph -> [ I ] ( ~=ph ` J ) e. ( Base ` G ) ) |
40 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
41 |
9 10 40 2
|
grpinvid2 |
|- ( ( G e. Grp /\ [ F ] ( ~=ph ` J ) e. ( Base ` G ) /\ [ I ] ( ~=ph ` J ) e. ( Base ` G ) ) -> ( ( N ` [ F ] ( ~=ph ` J ) ) = [ I ] ( ~=ph ` J ) <-> ( [ I ] ( ~=ph ` J ) ( +g ` G ) [ F ] ( ~=ph ` J ) ) = ( 0g ` G ) ) ) |
42 |
37 38 39 41
|
syl3anc |
|- ( ph -> ( ( N ` [ F ] ( ~=ph ` J ) ) = [ I ] ( ~=ph ` J ) <-> ( [ I ] ( ~=ph ` J ) ( +g ` G ) [ F ] ( ~=ph ` J ) ) = ( 0g ` G ) ) ) |
43 |
36 42
|
mpbird |
|- ( ph -> ( N ` [ F ] ( ~=ph ` J ) ) = [ I ] ( ~=ph ` J ) ) |