Metamath Proof Explorer


Theorem pibt1

Description: Theorem T000001 of pi-base. A compact topology is also countably compact. See pibp16 and pibp19 for the definitions of the relevant properties. (Contributed by ML, 8-Dec-2020)

Ref Expression
Hypothesis pibt1.19 C = x Top | y 𝒫 x x = y y ω z 𝒫 y Fin x = z
Assertion pibt1 J Comp J C

Proof

Step Hyp Ref Expression
1 pibt1.19 C = x Top | y 𝒫 x x = y y ω z 𝒫 y Fin x = z
2 pm3.41 J = y z 𝒫 y Fin J = z J = y y ω z 𝒫 y Fin J = z
3 2 ralimi y 𝒫 J J = y z 𝒫 y Fin J = z y 𝒫 J J = y y ω z 𝒫 y Fin J = z
4 3 anim2i J Top y 𝒫 J J = y z 𝒫 y Fin J = z J Top y 𝒫 J J = y y ω z 𝒫 y Fin J = z
5 eqid J = J
6 5 pibp16 J Comp J Top y 𝒫 J J = y z 𝒫 y Fin J = z
7 5 1 pibp19 J C J Top y 𝒫 J J = y y ω z 𝒫 y Fin J = z
8 4 6 7 3imtr4i J Comp J C