Metamath Proof Explorer


Theorem pibt2

Description: Theorem T000002 of pi-base, a countably compact topology is also weakly countably compact. See pibp19 and pibp21 for the definitions of the relevant properties. This proof uses the axiom of choice. (Contributed by ML, 30-Mar-2021)

Ref Expression
Hypotheses pibt2.x X = J
pibt2.19 C = x Top | y 𝒫 x x = y y ω z 𝒫 y Fin x = z
pibt2.21 W = x Top | y 𝒫 x Fin z x z limPt x y
Assertion pibt2 J C J W

Proof

Step Hyp Ref Expression
1 pibt2.x X = J
2 pibt2.19 C = x Top | y 𝒫 x x = y y ω z 𝒫 y Fin x = z
3 pibt2.21 W = x Top | y 𝒫 x Fin z x z limPt x y
4 1 2 pibp19 J C J Top y 𝒫 J X = y y ω z 𝒫 y Fin X = z
5 4 simplbi J C J Top
6 eldif b 𝒫 X Fin b 𝒫 X ¬ b Fin
7 velpw b 𝒫 X b X
8 7 anbi1i b 𝒫 X ¬ b Fin b X ¬ b Fin
9 vex b V
10 infinf b V ¬ b Fin ω b
11 9 10 ax-mp ¬ b Fin ω b
12 9 infcntss ω b a a b a ω
13 11 12 sylbi ¬ b Fin a a b a ω
14 13 ad2antll J C b X ¬ b Fin a a b a ω
15 sstr a b b X a X
16 15 ancoms b X a b a X
17 simplr J C a ω a X limPt J a = a ω
18 simpll J C a ω a X limPt J a = J C a ω
19 0ss a
20 sseq1 limPt J a = limPt J a a a
21 19 20 mpbiri limPt J a = limPt J a a
22 21 adantl J Top a X limPt J a = limPt J a a
23 1 cldlp J Top a X a Clsd J limPt J a a
24 23 adantr J Top a X limPt J a = a Clsd J limPt J a a
25 22 24 mpbird J Top a X limPt J a = a Clsd J
26 5 25 sylanl1 J C a X limPt J a = a Clsd J
27 26 adantllr J C a ω a X limPt J a = a Clsd J
28 simpr J C a ω a X limPt J a = limPt J a =
29 1 cldss a Clsd J a X
30 1 nlpineqsn J Top a X limPt J a = p a n J p n n a = p
31 simpr p n n a = p n a = p
32 31 reximi n J p n n a = p n J n a = p
33 32 ralimi p a n J p n n a = p p a n J n a = p
34 vex a V
35 ineq1 n = f p n a = f p a
36 35 eqeq1d n = f p n a = p f p a = p
37 34 36 ac6s p a n J n a = p f f : a J p a f p a = p
38 30 33 37 3syl J Top a X limPt J a = f f : a J p a f p a = p
39 fvineqsnf1 f : a J p a f p a = p f : a 1-1 J
40 simpr f : a J p a f p a = p p a f p a = p
41 39 40 jca f : a J p a f p a = p f : a 1-1 J p a f p a = p
42 41 eximi f f : a J p a f p a = p f f : a 1-1 J p a f p a = p
43 38 42 syl J Top a X limPt J a = f f : a 1-1 J p a f p a = p
44 29 43 syl3an2 J Top a Clsd J limPt J a = f f : a 1-1 J p a f p a = p
45 5 44 syl3an1 J C a Clsd J limPt J a = f f : a 1-1 J p a f p a = p
46 45 3adant1r J C a ω a Clsd J limPt J a = f f : a 1-1 J p a f p a = p
47 simpr J Top a Clsd J f : a 1-1 J f : a 1-1 J
48 vsnid p p
49 eleq2 f p a = p p f p a p p
50 48 49 mpbiri f p a = p p f p a
51 50 elin1d f p a = p p f p
52 51 ralimi p a f p a = p p a p f p
53 ralssiun p a p f p a p a f p
54 52 53 syl p a f p a = p a p a f p
55 54 adantl f : a 1-1 J p a f p a = p a p a f p
56 f1fn f : a 1-1 J f Fn a
57 fniunfv f Fn a p a f p = ran f
58 56 57 syl f : a 1-1 J p a f p = ran f
59 58 adantr f : a 1-1 J p a f p a = p p a f p = ran f
60 55 59 sseqtrd f : a 1-1 J p a f p a = p a ran f
61 1 cldopn a Clsd J X a J
62 61 ad2antll f : a 1-1 J J Top a Clsd J X a J
63 62 anim1i f : a 1-1 J J Top a Clsd J a ran f X a J a ran f
64 63 ancomd f : a 1-1 J J Top a Clsd J a ran f a ran f X a J
65 29 ad2antll f : a 1-1 J J Top a Clsd J a X
66 65 anim1i f : a 1-1 J J Top a Clsd J a ran f X a J a X a ran f X a J
67 unisng X a J X a = X a
68 67 eqcomd X a J X a = X a
69 eqimss X a = X a X a X a
70 ssun4 X a X a X a ran f X a
71 uniun ran f X a = ran f X a
72 70 71 sseqtrrdi X a X a X a ran f X a
73 68 69 72 3syl X a J X a ran f X a
74 ssun3 a ran f a ran f X a
75 74 71 sseqtrrdi a ran f a ran f X a
76 uncom a X a = X a a
77 undif1 X a a = X a
78 76 77 eqtri a X a = X a
79 ssequn2 a X X a = X
80 79 biimpi a X X a = X
81 78 80 eqtrid a X a X a = X
82 81 adantr a X a ran f X a X a ran f X a a X a = X
83 unss12 a ran f X a X a ran f X a a X a ran f X a ran f X a
84 unidm ran f X a ran f X a = ran f X a
85 83 84 sseqtrdi a ran f X a X a ran f X a a X a ran f X a
86 85 adantl a X a ran f X a X a ran f X a a X a ran f X a
87 82 86 eqsstrrd a X a ran f X a X a ran f X a X ran f X a
88 75 87 sylanr1 a X a ran f X a ran f X a X ran f X a
89 73 88 sylanr2 a X a ran f X a J X ran f X a
90 89 adantl f : a 1-1 J J Top a Clsd J a X a ran f X a J X ran f X a
91 f1f f : a 1-1 J f : a J
92 frn f : a J ran f J
93 91 92 syl f : a 1-1 J ran f J
94 1 topopn J Top X J
95 1 difopn X J a Clsd J X a J
96 94 95 sylan J Top a Clsd J X a J
97 96 snssd J Top a Clsd J X a J
98 unss12 ran f J X a J ran f X a J J
99 unidm J J = J
100 98 99 sseqtrdi ran f J X a J ran f X a J
101 93 97 100 syl2an f : a 1-1 J J Top a Clsd J ran f X a J
102 uniss ran f X a J ran f X a J
103 102 1 sseqtrrdi ran f X a J ran f X a X
104 101 103 syl f : a 1-1 J J Top a Clsd J ran f X a X
105 104 adantr f : a 1-1 J J Top a Clsd J a X a ran f X a J ran f X a X
106 90 105 eqssd f : a 1-1 J J Top a Clsd J a X a ran f X a J X = ran f X a
107 66 106 syldan f : a 1-1 J J Top a Clsd J a ran f X a J X = ran f X a
108 64 107 syldan f : a 1-1 J J Top a Clsd J a ran f X = ran f X a
109 60 108 sylan2 f : a 1-1 J J Top a Clsd J f : a 1-1 J p a f p a = p X = ran f X a
110 109 ancom1s J Top a Clsd J f : a 1-1 J f : a 1-1 J p a f p a = p X = ran f X a
111 110 ex J Top a Clsd J f : a 1-1 J f : a 1-1 J p a f p a = p X = ran f X a
112 47 111 mpand J Top a Clsd J f : a 1-1 J p a f p a = p X = ran f X a
113 112 impr J Top a Clsd J f : a 1-1 J p a f p a = p X = ran f X a
114 113 adantlrr J Top a Clsd J a ω f : a 1-1 J p a f p a = p X = ran f X a
115 5 114 sylanl1 J C a Clsd J a ω f : a 1-1 J p a f p a = p X = ran f X a
116 vex f V
117 f1f1orn f : a 1-1 J f : a 1-1 onto ran f
118 f1oen3g f V f : a 1-1 onto ran f a ran f
119 116 117 118 sylancr f : a 1-1 J a ran f
120 enen1 a ran f a ω ran f ω
121 endom ran f ω ran f ω
122 snfi X a Fin
123 isfinite X a Fin X a ω
124 122 123 mpbi X a ω
125 sdomdom X a ω X a ω
126 124 125 ax-mp X a ω
127 unctb ran f ω X a ω ran f X a ω
128 121 126 127 sylancl ran f ω ran f X a ω
129 120 128 syl6bi a ran f a ω ran f X a ω
130 119 129 syl f : a 1-1 J a ω ran f X a ω
131 130 impcom a ω f : a 1-1 J ran f X a ω
132 131 adantll a Clsd J a ω f : a 1-1 J ran f X a ω
133 132 ad2ant2lr J C a Clsd J a ω f : a 1-1 J p a f p a = p ran f X a ω
134 101 ancoms J Top a Clsd J f : a 1-1 J ran f X a J
135 134 adantrr J Top a Clsd J f : a 1-1 J p a f p a = p ran f X a J
136 135 adantlrr J Top a Clsd J a ω f : a 1-1 J p a f p a = p ran f X a J
137 5 136 sylanl1 J C a Clsd J a ω f : a 1-1 J p a f p a = p ran f X a J
138 elpw2g J C ran f X a 𝒫 J ran f X a J
139 138 biimprd J C ran f X a J ran f X a 𝒫 J
140 139 ad2antrr J C a Clsd J a ω f : a 1-1 J p a f p a = p ran f X a J ran f X a 𝒫 J
141 137 140 mpd J C a Clsd J a ω f : a 1-1 J p a f p a = p ran f X a 𝒫 J
142 4 simprbi J C y 𝒫 J X = y y ω z 𝒫 y Fin X = z
143 unieq s = z s = z
144 143 eqeq2d s = z X = s X = z
145 144 cbvrexvw s 𝒫 y Fin X = s z 𝒫 y Fin X = z
146 145 imbi2i X = y y ω s 𝒫 y Fin X = s X = y y ω z 𝒫 y Fin X = z
147 146 ralbii y 𝒫 J X = y y ω s 𝒫 y Fin X = s y 𝒫 J X = y y ω z 𝒫 y Fin X = z
148 142 147 sylibr J C y 𝒫 J X = y y ω s 𝒫 y Fin X = s
149 unieq y = ran f X a y = ran f X a
150 149 eqeq2d y = ran f X a X = y X = ran f X a
151 breq1 y = ran f X a y ω ran f X a ω
152 150 151 anbi12d y = ran f X a X = y y ω X = ran f X a ran f X a ω
153 pweq y = ran f X a 𝒫 y = 𝒫 ran f X a
154 153 ineq1d y = ran f X a 𝒫 y Fin = 𝒫 ran f X a Fin
155 154 rexeqdv y = ran f X a s 𝒫 y Fin X = s s 𝒫 ran f X a Fin X = s
156 152 155 imbi12d y = ran f X a X = y y ω s 𝒫 y Fin X = s X = ran f X a ran f X a ω s 𝒫 ran f X a Fin X = s
157 156 rspccv y 𝒫 J X = y y ω s 𝒫 y Fin X = s ran f X a 𝒫 J X = ran f X a ran f X a ω s 𝒫 ran f X a Fin X = s
158 148 157 syl J C ran f X a 𝒫 J X = ran f X a ran f X a ω s 𝒫 ran f X a Fin X = s
159 158 ad2antrr J C a Clsd J a ω f : a 1-1 J p a f p a = p ran f X a 𝒫 J X = ran f X a ran f X a ω s 𝒫 ran f X a Fin X = s
160 141 159 mpd J C a Clsd J a ω f : a 1-1 J p a f p a = p X = ran f X a ran f X a ω s 𝒫 ran f X a Fin X = s
161 115 133 160 mp2and J C a Clsd J a ω f : a 1-1 J p a f p a = p s 𝒫 ran f X a Fin X = s
162 df-rex s 𝒫 ran f X a Fin X = s s s 𝒫 ran f X a Fin X = s
163 elinel1 s 𝒫 ran f X a Fin s 𝒫 ran f X a
164 velpw s 𝒫 ran f X a s ran f X a
165 ssdif s ran f X a s X a ran f X a X a
166 difun2 ran f X a X a = ran f X a
167 165 166 sseqtrdi s ran f X a s X a ran f X a
168 167 difss2d s ran f X a s X a ran f
169 164 168 sylbi s 𝒫 ran f X a s X a ran f
170 163 169 syl s 𝒫 ran f X a Fin s X a ran f
171 170 a1i J Top a X s 𝒫 ran f X a Fin s X a ran f
172 sseq2 X = s a X a s
173 uniexg J Top J V
174 1 173 eqeltrid J Top X V
175 difexg X V X a V
176 unisng X a V X a = X a
177 174 175 176 3syl J Top X a = X a
178 177 ineq2d J Top a X a = a X a
179 disjdif a X a =
180 178 179 eqtrdi J Top a X a =
181 inunissunidif a X a = a s a s X a
182 180 181 syl J Top a s a s X a
183 172 182 sylan9bbr J Top X = s a X a s X a
184 183 biimpd J Top X = s a X a s X a
185 184 impancom J Top a X X = s a s X a
186 171 185 anim12d J Top a X s 𝒫 ran f X a Fin X = s s X a ran f a s X a
187 5 29 186 syl2an J C a Clsd J s 𝒫 ran f X a Fin X = s s X a ran f a s X a
188 187 adantrr J C a Clsd J a ω s 𝒫 ran f X a Fin X = s s X a ran f a s X a
189 188 anim2d J C a Clsd J a ω f : a 1-1 J p a f p a = p s 𝒫 ran f X a Fin X = s f : a 1-1 J p a f p a = p s X a ran f a s X a
190 119 ad2antrr f : a 1-1 J p a f p a = p s X a ran f a s X a a ran f
191 fvineqsneq f Fn a p a f p a = p s X a ran f a s X a s X a = ran f
192 56 191 sylanl1 f : a 1-1 J p a f p a = p s X a ran f a s X a s X a = ran f
193 vex s V
194 difss s X a s
195 ssdomg s V s X a s s X a s
196 193 194 195 mp2 s X a s
197 192 196 eqbrtrrdi f : a 1-1 J p a f p a = p s X a ran f a s X a ran f s
198 endomtr a ran f ran f s a s
199 190 197 198 syl2anc f : a 1-1 J p a f p a = p s X a ran f a s X a a s
200 189 199 syl6 J C a Clsd J a ω f : a 1-1 J p a f p a = p s 𝒫 ran f X a Fin X = s a s
201 200 expdimp J C a Clsd J a ω f : a 1-1 J p a f p a = p s 𝒫 ran f X a Fin X = s a s
202 elinel2 s 𝒫 ran f X a Fin s Fin
203 202 adantr s 𝒫 ran f X a Fin X = s s Fin
204 203 a1i J C a Clsd J a ω f : a 1-1 J p a f p a = p s 𝒫 ran f X a Fin X = s s Fin
205 201 204 jcad J C a Clsd J a ω f : a 1-1 J p a f p a = p s 𝒫 ran f X a Fin X = s a s s Fin
206 205 eximdv J C a Clsd J a ω f : a 1-1 J p a f p a = p s s 𝒫 ran f X a Fin X = s s a s s Fin
207 162 206 syl5bi J C a Clsd J a ω f : a 1-1 J p a f p a = p s 𝒫 ran f X a Fin X = s s a s s Fin
208 161 207 mpd J C a Clsd J a ω f : a 1-1 J p a f p a = p s a s s Fin
209 208 ex J C a Clsd J a ω f : a 1-1 J p a f p a = p s a s s Fin
210 209 exlimdv J C a Clsd J a ω f f : a 1-1 J p a f p a = p s a s s Fin
211 210 anass1rs J C a ω a Clsd J f f : a 1-1 J p a f p a = p s a s s Fin
212 211 3adant3 J C a ω a Clsd J limPt J a = f f : a 1-1 J p a f p a = p s a s s Fin
213 46 212 mpd J C a ω a Clsd J limPt J a = s a s s Fin
214 18 27 28 213 syl3anc J C a ω a X limPt J a = s a s s Fin
215 214 anasss J C a ω a X limPt J a = s a s s Fin
216 isfinite s Fin s ω
217 domsdomtr a s s ω a ω
218 216 217 sylan2b a s s Fin a ω
219 218 exlimiv s a s s Fin a ω
220 sdomnen a ω ¬ a ω
221 215 219 220 3syl J C a ω a X limPt J a = ¬ a ω
222 17 221 pm2.65da J C a ω ¬ a X limPt J a =
223 imnan a X ¬ limPt J a = ¬ a X limPt J a =
224 222 223 sylibr J C a ω a X ¬ limPt J a =
225 224 imp J C a ω a X ¬ limPt J a =
226 neq0 ¬ limPt J a = s s limPt J a
227 225 226 sylib J C a ω a X s s limPt J a
228 1 lpss J Top a X limPt J a X
229 5 228 sylan J C a X limPt J a X
230 229 adantlr J C a ω a X limPt J a X
231 230 sseld J C a ω a X s limPt J a s X
232 231 ancrd J C a ω a X s limPt J a s X s limPt J a
233 232 eximdv J C a ω a X s s limPt J a s s X s limPt J a
234 df-rex s X s limPt J a s s X s limPt J a
235 233 234 syl6ibr J C a ω a X s s limPt J a s X s limPt J a
236 227 235 mpd J C a ω a X s X s limPt J a
237 16 236 sylan2 J C a ω b X a b s X s limPt J a
238 1 lpss3 J Top b X a b limPt J a limPt J b
239 238 3expb J Top b X a b limPt J a limPt J b
240 5 239 sylan J C b X a b limPt J a limPt J b
241 240 adantlr J C a ω b X a b limPt J a limPt J b
242 241 sseld J C a ω b X a b s limPt J a s limPt J b
243 242 reximdv J C a ω b X a b s X s limPt J a s X s limPt J b
244 237 243 mpd J C a ω b X a b s X s limPt J b
245 244 an42s J C b X a b a ω s X s limPt J b
246 245 ex J C b X a b a ω s X s limPt J b
247 246 exlimdv J C b X a a b a ω s X s limPt J b
248 247 adantrr J C b X ¬ b Fin a a b a ω s X s limPt J b
249 14 248 mpd J C b X ¬ b Fin s X s limPt J b
250 8 249 sylan2b J C b 𝒫 X ¬ b Fin s X s limPt J b
251 6 250 sylan2b J C b 𝒫 X Fin s X s limPt J b
252 251 ralrimiva J C b 𝒫 X Fin s X s limPt J b
253 simpr y = b z = s z = s
254 fveq2 y = b limPt J y = limPt J b
255 254 adantr y = b z = s limPt J y = limPt J b
256 253 255 eleq12d y = b z = s z limPt J y s limPt J b
257 256 cbvrexdva y = b z X z limPt J y s X s limPt J b
258 257 cbvralvw y 𝒫 X Fin z X z limPt J y b 𝒫 X Fin s X s limPt J b
259 252 258 sylibr J C y 𝒫 X Fin z X z limPt J y
260 1 3 pibp21 J W J Top y 𝒫 X Fin z X z limPt J y
261 5 259 260 sylanbrc J C J W