Step |
Hyp |
Ref |
Expression |
1 |
|
pibt2.x |
|
2 |
|
pibt2.19 |
|
3 |
|
pibt2.21 |
|
4 |
1 2
|
pibp19 |
|
5 |
4
|
simplbi |
|
6 |
|
eldif |
|
7 |
|
velpw |
|
8 |
7
|
anbi1i |
|
9 |
|
vex |
|
10 |
|
infinf |
|
11 |
9 10
|
ax-mp |
|
12 |
9
|
infcntss |
|
13 |
11 12
|
sylbi |
|
14 |
13
|
ad2antll |
|
15 |
|
sstr |
|
16 |
15
|
ancoms |
|
17 |
|
simplr |
|
18 |
|
simpll |
|
19 |
|
0ss |
|
20 |
|
sseq1 |
|
21 |
19 20
|
mpbiri |
|
22 |
21
|
adantl |
|
23 |
1
|
cldlp |
|
24 |
23
|
adantr |
|
25 |
22 24
|
mpbird |
|
26 |
5 25
|
sylanl1 |
|
27 |
26
|
adantllr |
|
28 |
|
simpr |
|
29 |
1
|
cldss |
|
30 |
1
|
nlpineqsn |
|
31 |
|
simpr |
|
32 |
31
|
reximi |
|
33 |
32
|
ralimi |
|
34 |
|
vex |
|
35 |
|
ineq1 |
|
36 |
35
|
eqeq1d |
|
37 |
34 36
|
ac6s |
|
38 |
30 33 37
|
3syl |
|
39 |
|
fvineqsnf1 |
|
40 |
|
simpr |
|
41 |
39 40
|
jca |
|
42 |
41
|
eximi |
|
43 |
38 42
|
syl |
|
44 |
29 43
|
syl3an2 |
|
45 |
5 44
|
syl3an1 |
|
46 |
45
|
3adant1r |
|
47 |
|
simpr |
|
48 |
|
vsnid |
|
49 |
|
eleq2 |
|
50 |
48 49
|
mpbiri |
|
51 |
50
|
elin1d |
|
52 |
51
|
ralimi |
|
53 |
|
ralssiun |
|
54 |
52 53
|
syl |
|
55 |
54
|
adantl |
|
56 |
|
f1fn |
|
57 |
|
fniunfv |
|
58 |
56 57
|
syl |
|
59 |
58
|
adantr |
|
60 |
55 59
|
sseqtrd |
|
61 |
1
|
cldopn |
|
62 |
61
|
ad2antll |
|
63 |
62
|
anim1i |
|
64 |
63
|
ancomd |
|
65 |
29
|
ad2antll |
|
66 |
65
|
anim1i |
|
67 |
|
unisng |
|
68 |
67
|
eqcomd |
|
69 |
|
eqimss |
|
70 |
|
ssun4 |
|
71 |
|
uniun |
|
72 |
70 71
|
sseqtrrdi |
|
73 |
68 69 72
|
3syl |
|
74 |
|
ssun3 |
|
75 |
74 71
|
sseqtrrdi |
|
76 |
|
uncom |
|
77 |
|
undif1 |
|
78 |
76 77
|
eqtri |
|
79 |
|
ssequn2 |
|
80 |
79
|
biimpi |
|
81 |
78 80
|
eqtrid |
|
82 |
81
|
adantr |
|
83 |
|
unss12 |
|
84 |
|
unidm |
|
85 |
83 84
|
sseqtrdi |
|
86 |
85
|
adantl |
|
87 |
82 86
|
eqsstrrd |
|
88 |
75 87
|
sylanr1 |
|
89 |
73 88
|
sylanr2 |
|
90 |
89
|
adantl |
|
91 |
|
f1f |
|
92 |
|
frn |
|
93 |
91 92
|
syl |
|
94 |
1
|
topopn |
|
95 |
1
|
difopn |
|
96 |
94 95
|
sylan |
|
97 |
96
|
snssd |
|
98 |
|
unss12 |
|
99 |
|
unidm |
|
100 |
98 99
|
sseqtrdi |
|
101 |
93 97 100
|
syl2an |
|
102 |
|
uniss |
|
103 |
102 1
|
sseqtrrdi |
|
104 |
101 103
|
syl |
|
105 |
104
|
adantr |
|
106 |
90 105
|
eqssd |
|
107 |
66 106
|
syldan |
|
108 |
64 107
|
syldan |
|
109 |
60 108
|
sylan2 |
|
110 |
109
|
ancom1s |
|
111 |
110
|
ex |
|
112 |
47 111
|
mpand |
|
113 |
112
|
impr |
|
114 |
113
|
adantlrr |
|
115 |
5 114
|
sylanl1 |
|
116 |
|
vex |
|
117 |
|
f1f1orn |
|
118 |
|
f1oen3g |
|
119 |
116 117 118
|
sylancr |
|
120 |
|
enen1 |
|
121 |
|
endom |
|
122 |
|
snfi |
|
123 |
|
isfinite |
|
124 |
122 123
|
mpbi |
|
125 |
|
sdomdom |
|
126 |
124 125
|
ax-mp |
|
127 |
|
unctb |
|
128 |
121 126 127
|
sylancl |
|
129 |
120 128
|
syl6bi |
|
130 |
119 129
|
syl |
|
131 |
130
|
impcom |
|
132 |
131
|
adantll |
|
133 |
132
|
ad2ant2lr |
|
134 |
101
|
ancoms |
|
135 |
134
|
adantrr |
|
136 |
135
|
adantlrr |
|
137 |
5 136
|
sylanl1 |
|
138 |
|
elpw2g |
|
139 |
138
|
biimprd |
|
140 |
139
|
ad2antrr |
|
141 |
137 140
|
mpd |
|
142 |
4
|
simprbi |
|
143 |
|
unieq |
|
144 |
143
|
eqeq2d |
|
145 |
144
|
cbvrexvw |
|
146 |
145
|
imbi2i |
|
147 |
146
|
ralbii |
|
148 |
142 147
|
sylibr |
|
149 |
|
unieq |
|
150 |
149
|
eqeq2d |
|
151 |
|
breq1 |
|
152 |
150 151
|
anbi12d |
|
153 |
|
pweq |
|
154 |
153
|
ineq1d |
|
155 |
154
|
rexeqdv |
|
156 |
152 155
|
imbi12d |
|
157 |
156
|
rspccv |
|
158 |
148 157
|
syl |
|
159 |
158
|
ad2antrr |
|
160 |
141 159
|
mpd |
|
161 |
115 133 160
|
mp2and |
|
162 |
|
df-rex |
|
163 |
|
elinel1 |
|
164 |
|
velpw |
|
165 |
|
ssdif |
|
166 |
|
difun2 |
|
167 |
165 166
|
sseqtrdi |
|
168 |
167
|
difss2d |
|
169 |
164 168
|
sylbi |
|
170 |
163 169
|
syl |
|
171 |
170
|
a1i |
|
172 |
|
sseq2 |
|
173 |
|
uniexg |
|
174 |
1 173
|
eqeltrid |
|
175 |
|
difexg |
|
176 |
|
unisng |
|
177 |
174 175 176
|
3syl |
|
178 |
177
|
ineq2d |
|
179 |
|
disjdif |
|
180 |
178 179
|
eqtrdi |
|
181 |
|
inunissunidif |
|
182 |
180 181
|
syl |
|
183 |
172 182
|
sylan9bbr |
|
184 |
183
|
biimpd |
|
185 |
184
|
impancom |
|
186 |
171 185
|
anim12d |
|
187 |
5 29 186
|
syl2an |
|
188 |
187
|
adantrr |
|
189 |
188
|
anim2d |
|
190 |
119
|
ad2antrr |
|
191 |
|
fvineqsneq |
|
192 |
56 191
|
sylanl1 |
|
193 |
|
vex |
|
194 |
|
difss |
|
195 |
|
ssdomg |
|
196 |
193 194 195
|
mp2 |
|
197 |
192 196
|
eqbrtrrdi |
|
198 |
|
endomtr |
|
199 |
190 197 198
|
syl2anc |
|
200 |
189 199
|
syl6 |
|
201 |
200
|
expdimp |
|
202 |
|
elinel2 |
|
203 |
202
|
adantr |
|
204 |
203
|
a1i |
|
205 |
201 204
|
jcad |
|
206 |
205
|
eximdv |
|
207 |
162 206
|
syl5bi |
|
208 |
161 207
|
mpd |
|
209 |
208
|
ex |
|
210 |
209
|
exlimdv |
|
211 |
210
|
anass1rs |
|
212 |
211
|
3adant3 |
|
213 |
46 212
|
mpd |
|
214 |
18 27 28 213
|
syl3anc |
|
215 |
214
|
anasss |
|
216 |
|
isfinite |
|
217 |
|
domsdomtr |
|
218 |
216 217
|
sylan2b |
|
219 |
218
|
exlimiv |
|
220 |
|
sdomnen |
|
221 |
215 219 220
|
3syl |
|
222 |
17 221
|
pm2.65da |
|
223 |
|
imnan |
|
224 |
222 223
|
sylibr |
|
225 |
224
|
imp |
|
226 |
|
neq0 |
|
227 |
225 226
|
sylib |
|
228 |
1
|
lpss |
|
229 |
5 228
|
sylan |
|
230 |
229
|
adantlr |
|
231 |
230
|
sseld |
|
232 |
231
|
ancrd |
|
233 |
232
|
eximdv |
|
234 |
|
df-rex |
|
235 |
233 234
|
syl6ibr |
|
236 |
227 235
|
mpd |
|
237 |
16 236
|
sylan2 |
|
238 |
1
|
lpss3 |
|
239 |
238
|
3expb |
|
240 |
5 239
|
sylan |
|
241 |
240
|
adantlr |
|
242 |
241
|
sseld |
|
243 |
242
|
reximdv |
|
244 |
237 243
|
mpd |
|
245 |
244
|
an42s |
|
246 |
245
|
ex |
|
247 |
246
|
exlimdv |
|
248 |
247
|
adantrr |
|
249 |
14 248
|
mpd |
|
250 |
8 249
|
sylan2b |
|
251 |
6 250
|
sylan2b |
|
252 |
251
|
ralrimiva |
|
253 |
|
simpr |
|
254 |
|
fveq2 |
|
255 |
254
|
adantr |
|
256 |
253 255
|
eleq12d |
|
257 |
256
|
cbvrexdva |
|
258 |
257
|
cbvralvw |
|
259 |
252 258
|
sylibr |
|
260 |
1 3
|
pibp21 |
|
261 |
5 259 260
|
sylanbrc |
|