Step |
Hyp |
Ref |
Expression |
1 |
|
pibt2.x |
|
2 |
|
pibt2.19 |
|
3 |
|
pibt2.21 |
|
4 |
1 2
|
pibp19 |
|
5 |
4
|
simplbi |
|
6 |
|
eldif |
|
7 |
|
velpw |
|
8 |
7
|
anbi1i |
|
9 |
|
vex |
|
10 |
|
infinf |
|
11 |
9 10
|
ax-mp |
|
12 |
9
|
infcntss |
|
13 |
11 12
|
sylbi |
|
14 |
13
|
ad2antll |
|
15 |
|
sstr |
|
16 |
15
|
ancoms |
|
17 |
|
simplr |
|
18 |
|
simpll |
|
19 |
|
0ss |
|
20 |
|
sseq1 |
|
21 |
19 20
|
mpbiri |
|
22 |
21
|
adantl |
|
23 |
1
|
cldlp |
|
24 |
23
|
adantr |
|
25 |
22 24
|
mpbird |
|
26 |
5 25
|
sylanl1 |
|
27 |
26
|
adantllr |
|
28 |
|
simpr |
|
29 |
1
|
cldss |
|
30 |
1
|
nlpineqsn |
|
31 |
|
simpr |
|
32 |
31
|
reximi |
|
33 |
32
|
ralimi |
|
34 |
|
vex |
|
35 |
|
ineq1 |
|
36 |
35
|
eqeq1d |
|
37 |
34 36
|
ac6s |
|
38 |
|
fvineqsnf1 |
|
39 |
|
simpr |
|
40 |
38 39
|
jca |
|
41 |
40
|
eximi |
|
42 |
30 33 37 41
|
4syl |
|
43 |
29 42
|
syl3an2 |
|
44 |
5 43
|
syl3an1 |
|
45 |
44
|
3adant1r |
|
46 |
|
simpr |
|
47 |
|
vsnid |
|
48 |
|
eleq2 |
|
49 |
47 48
|
mpbiri |
|
50 |
49
|
elin1d |
|
51 |
50
|
ralimi |
|
52 |
|
ralssiun |
|
53 |
51 52
|
syl |
|
54 |
53
|
adantl |
|
55 |
|
f1fn |
|
56 |
|
fniunfv |
|
57 |
55 56
|
syl |
|
58 |
57
|
adantr |
|
59 |
54 58
|
sseqtrd |
|
60 |
1
|
cldopn |
|
61 |
60
|
ad2antll |
|
62 |
61
|
anim1i |
|
63 |
62
|
ancomd |
|
64 |
29
|
ad2antll |
|
65 |
64
|
anim1i |
|
66 |
|
unisng |
|
67 |
66
|
eqcomd |
|
68 |
|
eqimss |
|
69 |
|
ssun4 |
|
70 |
|
uniun |
|
71 |
69 70
|
sseqtrrdi |
|
72 |
67 68 71
|
3syl |
|
73 |
|
ssun3 |
|
74 |
73 70
|
sseqtrrdi |
|
75 |
|
uncom |
|
76 |
|
undif1 |
|
77 |
75 76
|
eqtri |
|
78 |
|
ssequn2 |
|
79 |
78
|
biimpi |
|
80 |
77 79
|
eqtrid |
|
81 |
80
|
adantr |
|
82 |
|
unss12 |
|
83 |
|
unidm |
|
84 |
82 83
|
sseqtrdi |
|
85 |
84
|
adantl |
|
86 |
81 85
|
eqsstrrd |
|
87 |
74 86
|
sylanr1 |
|
88 |
72 87
|
sylanr2 |
|
89 |
88
|
adantl |
|
90 |
|
f1f |
|
91 |
|
frn |
|
92 |
90 91
|
syl |
|
93 |
1
|
topopn |
|
94 |
1
|
difopn |
|
95 |
93 94
|
sylan |
|
96 |
95
|
snssd |
|
97 |
|
unss12 |
|
98 |
|
unidm |
|
99 |
97 98
|
sseqtrdi |
|
100 |
92 96 99
|
syl2an |
|
101 |
|
uniss |
|
102 |
101 1
|
sseqtrrdi |
|
103 |
100 102
|
syl |
|
104 |
103
|
adantr |
|
105 |
89 104
|
eqssd |
|
106 |
65 105
|
syldan |
|
107 |
63 106
|
syldan |
|
108 |
59 107
|
sylan2 |
|
109 |
108
|
ancom1s |
|
110 |
109
|
ex |
|
111 |
46 110
|
mpand |
|
112 |
111
|
impr |
|
113 |
112
|
adantlrr |
|
114 |
5 113
|
sylanl1 |
|
115 |
|
vex |
|
116 |
|
f1f1orn |
|
117 |
|
f1oen3g |
|
118 |
115 116 117
|
sylancr |
|
119 |
|
enen1 |
|
120 |
|
endom |
|
121 |
|
snfi |
|
122 |
|
isfinite |
|
123 |
121 122
|
mpbi |
|
124 |
|
sdomdom |
|
125 |
123 124
|
ax-mp |
|
126 |
|
unctb |
|
127 |
120 125 126
|
sylancl |
|
128 |
119 127
|
biimtrdi |
|
129 |
118 128
|
syl |
|
130 |
129
|
impcom |
|
131 |
130
|
adantll |
|
132 |
131
|
ad2ant2lr |
|
133 |
100
|
ancoms |
|
134 |
133
|
adantrr |
|
135 |
134
|
adantlrr |
|
136 |
5 135
|
sylanl1 |
|
137 |
|
elpw2g |
|
138 |
137
|
biimprd |
|
139 |
138
|
ad2antrr |
|
140 |
136 139
|
mpd |
|
141 |
4
|
simprbi |
|
142 |
|
unieq |
|
143 |
142
|
eqeq2d |
|
144 |
143
|
cbvrexvw |
|
145 |
144
|
imbi2i |
|
146 |
145
|
ralbii |
|
147 |
141 146
|
sylibr |
|
148 |
|
unieq |
|
149 |
148
|
eqeq2d |
|
150 |
|
breq1 |
|
151 |
149 150
|
anbi12d |
|
152 |
|
pweq |
|
153 |
152
|
ineq1d |
|
154 |
153
|
rexeqdv |
|
155 |
151 154
|
imbi12d |
|
156 |
155
|
rspccv |
|
157 |
147 156
|
syl |
|
158 |
157
|
ad2antrr |
|
159 |
140 158
|
mpd |
|
160 |
114 132 159
|
mp2and |
|
161 |
|
df-rex |
|
162 |
|
elinel1 |
|
163 |
|
velpw |
|
164 |
|
ssdif |
|
165 |
|
difun2 |
|
166 |
164 165
|
sseqtrdi |
|
167 |
166
|
difss2d |
|
168 |
163 167
|
sylbi |
|
169 |
162 168
|
syl |
|
170 |
169
|
a1i |
|
171 |
|
sseq2 |
|
172 |
|
uniexg |
|
173 |
1 172
|
eqeltrid |
|
174 |
|
difexg |
|
175 |
|
unisng |
|
176 |
173 174 175
|
3syl |
|
177 |
176
|
ineq2d |
|
178 |
|
disjdif |
|
179 |
177 178
|
eqtrdi |
|
180 |
|
inunissunidif |
|
181 |
179 180
|
syl |
|
182 |
171 181
|
sylan9bbr |
|
183 |
182
|
biimpd |
|
184 |
183
|
impancom |
|
185 |
170 184
|
anim12d |
|
186 |
5 29 185
|
syl2an |
|
187 |
186
|
adantrr |
|
188 |
187
|
anim2d |
|
189 |
118
|
ad2antrr |
|
190 |
|
fvineqsneq |
|
191 |
55 190
|
sylanl1 |
|
192 |
|
vex |
|
193 |
|
difss |
|
194 |
|
ssdomg |
|
195 |
192 193 194
|
mp2 |
|
196 |
191 195
|
eqbrtrrdi |
|
197 |
|
endomtr |
|
198 |
189 196 197
|
syl2anc |
|
199 |
188 198
|
syl6 |
|
200 |
199
|
expdimp |
|
201 |
|
elinel2 |
|
202 |
201
|
adantr |
|
203 |
202
|
a1i |
|
204 |
200 203
|
jcad |
|
205 |
204
|
eximdv |
|
206 |
161 205
|
biimtrid |
|
207 |
160 206
|
mpd |
|
208 |
207
|
ex |
|
209 |
208
|
exlimdv |
|
210 |
209
|
anass1rs |
|
211 |
210
|
3adant3 |
|
212 |
45 211
|
mpd |
|
213 |
18 27 28 212
|
syl3anc |
|
214 |
213
|
anasss |
|
215 |
|
isfinite |
|
216 |
|
domsdomtr |
|
217 |
215 216
|
sylan2b |
|
218 |
217
|
exlimiv |
|
219 |
|
sdomnen |
|
220 |
214 218 219
|
3syl |
|
221 |
17 220
|
pm2.65da |
|
222 |
|
imnan |
|
223 |
221 222
|
sylibr |
|
224 |
223
|
imp |
|
225 |
|
neq0 |
|
226 |
224 225
|
sylib |
|
227 |
1
|
lpss |
|
228 |
5 227
|
sylan |
|
229 |
228
|
adantlr |
|
230 |
229
|
sseld |
|
231 |
230
|
ancrd |
|
232 |
231
|
eximdv |
|
233 |
|
df-rex |
|
234 |
232 233
|
imbitrrdi |
|
235 |
226 234
|
mpd |
|
236 |
16 235
|
sylan2 |
|
237 |
1
|
lpss3 |
|
238 |
237
|
3expb |
|
239 |
5 238
|
sylan |
|
240 |
239
|
adantlr |
|
241 |
240
|
sseld |
|
242 |
241
|
reximdv |
|
243 |
236 242
|
mpd |
|
244 |
243
|
an42s |
|
245 |
244
|
ex |
|
246 |
245
|
exlimdv |
|
247 |
246
|
adantrr |
|
248 |
14 247
|
mpd |
|
249 |
8 248
|
sylan2b |
|
250 |
6 249
|
sylan2b |
|
251 |
250
|
ralrimiva |
|
252 |
|
simpr |
|
253 |
|
fveq2 |
|
254 |
253
|
adantr |
|
255 |
252 254
|
eleq12d |
|
256 |
255
|
cbvrexdva |
|
257 |
256
|
cbvralvw |
|
258 |
251 257
|
sylibr |
|
259 |
1 3
|
pibp21 |
|
260 |
5 258 259
|
sylanbrc |
|