Step |
Hyp |
Ref |
Expression |
1 |
|
pibt2.x |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
pibt2.19 |
⊢ 𝐶 = { 𝑥 ∈ Top ∣ ∀ 𝑦 ∈ 𝒫 𝑥 ( ( ∪ 𝑥 = ∪ 𝑦 ∧ 𝑦 ≼ ω ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝑥 = ∪ 𝑧 ) } |
3 |
|
pibt2.21 |
⊢ 𝑊 = { 𝑥 ∈ Top ∣ ∀ 𝑦 ∈ ( 𝒫 ∪ 𝑥 ∖ Fin ) ∃ 𝑧 ∈ ∪ 𝑥 𝑧 ∈ ( ( limPt ‘ 𝑥 ) ‘ 𝑦 ) } |
4 |
1 2
|
pibp19 |
⊢ ( 𝐽 ∈ 𝐶 ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝐽 ( ( 𝑋 = ∪ 𝑦 ∧ 𝑦 ≼ ω ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) ) |
5 |
4
|
simplbi |
⊢ ( 𝐽 ∈ 𝐶 → 𝐽 ∈ Top ) |
6 |
|
eldif |
⊢ ( 𝑏 ∈ ( 𝒫 𝑋 ∖ Fin ) ↔ ( 𝑏 ∈ 𝒫 𝑋 ∧ ¬ 𝑏 ∈ Fin ) ) |
7 |
|
velpw |
⊢ ( 𝑏 ∈ 𝒫 𝑋 ↔ 𝑏 ⊆ 𝑋 ) |
8 |
7
|
anbi1i |
⊢ ( ( 𝑏 ∈ 𝒫 𝑋 ∧ ¬ 𝑏 ∈ Fin ) ↔ ( 𝑏 ⊆ 𝑋 ∧ ¬ 𝑏 ∈ Fin ) ) |
9 |
|
vex |
⊢ 𝑏 ∈ V |
10 |
|
infinf |
⊢ ( 𝑏 ∈ V → ( ¬ 𝑏 ∈ Fin ↔ ω ≼ 𝑏 ) ) |
11 |
9 10
|
ax-mp |
⊢ ( ¬ 𝑏 ∈ Fin ↔ ω ≼ 𝑏 ) |
12 |
9
|
infcntss |
⊢ ( ω ≼ 𝑏 → ∃ 𝑎 ( 𝑎 ⊆ 𝑏 ∧ 𝑎 ≈ ω ) ) |
13 |
11 12
|
sylbi |
⊢ ( ¬ 𝑏 ∈ Fin → ∃ 𝑎 ( 𝑎 ⊆ 𝑏 ∧ 𝑎 ≈ ω ) ) |
14 |
13
|
ad2antll |
⊢ ( ( 𝐽 ∈ 𝐶 ∧ ( 𝑏 ⊆ 𝑋 ∧ ¬ 𝑏 ∈ Fin ) ) → ∃ 𝑎 ( 𝑎 ⊆ 𝑏 ∧ 𝑎 ≈ ω ) ) |
15 |
|
sstr |
⊢ ( ( 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) → 𝑎 ⊆ 𝑋 ) |
16 |
15
|
ancoms |
⊢ ( ( 𝑏 ⊆ 𝑋 ∧ 𝑎 ⊆ 𝑏 ) → 𝑎 ⊆ 𝑋 ) |
17 |
|
simplr |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ 𝑎 ≈ ω ) ∧ ( 𝑎 ⊆ 𝑋 ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) ) → 𝑎 ≈ ω ) |
18 |
|
simpll |
⊢ ( ( ( ( 𝐽 ∈ 𝐶 ∧ 𝑎 ≈ ω ) ∧ 𝑎 ⊆ 𝑋 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) → ( 𝐽 ∈ 𝐶 ∧ 𝑎 ≈ ω ) ) |
19 |
|
0ss |
⊢ ∅ ⊆ 𝑎 |
20 |
|
sseq1 |
⊢ ( ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ → ( ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ⊆ 𝑎 ↔ ∅ ⊆ 𝑎 ) ) |
21 |
19 20
|
mpbiri |
⊢ ( ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ → ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ⊆ 𝑎 ) |
22 |
21
|
adantl |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑎 ⊆ 𝑋 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ⊆ 𝑎 ) |
23 |
1
|
cldlp |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑎 ⊆ 𝑋 ) → ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ⊆ 𝑎 ) ) |
24 |
23
|
adantr |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑎 ⊆ 𝑋 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) → ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ⊆ 𝑎 ) ) |
25 |
22 24
|
mpbird |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑎 ⊆ 𝑋 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) → 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) |
26 |
5 25
|
sylanl1 |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ 𝑎 ⊆ 𝑋 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) → 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) |
27 |
26
|
adantllr |
⊢ ( ( ( ( 𝐽 ∈ 𝐶 ∧ 𝑎 ≈ ω ) ∧ 𝑎 ⊆ 𝑋 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) → 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) |
28 |
|
simpr |
⊢ ( ( ( ( 𝐽 ∈ 𝐶 ∧ 𝑎 ≈ ω ) ∧ 𝑎 ⊆ 𝑋 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) |
29 |
1
|
cldss |
⊢ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) → 𝑎 ⊆ 𝑋 ) |
30 |
1
|
nlpineqsn |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑎 ⊆ 𝑋 ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) → ∀ 𝑝 ∈ 𝑎 ∃ 𝑛 ∈ 𝐽 ( 𝑝 ∈ 𝑛 ∧ ( 𝑛 ∩ 𝑎 ) = { 𝑝 } ) ) |
31 |
|
simpr |
⊢ ( ( 𝑝 ∈ 𝑛 ∧ ( 𝑛 ∩ 𝑎 ) = { 𝑝 } ) → ( 𝑛 ∩ 𝑎 ) = { 𝑝 } ) |
32 |
31
|
reximi |
⊢ ( ∃ 𝑛 ∈ 𝐽 ( 𝑝 ∈ 𝑛 ∧ ( 𝑛 ∩ 𝑎 ) = { 𝑝 } ) → ∃ 𝑛 ∈ 𝐽 ( 𝑛 ∩ 𝑎 ) = { 𝑝 } ) |
33 |
32
|
ralimi |
⊢ ( ∀ 𝑝 ∈ 𝑎 ∃ 𝑛 ∈ 𝐽 ( 𝑝 ∈ 𝑛 ∧ ( 𝑛 ∩ 𝑎 ) = { 𝑝 } ) → ∀ 𝑝 ∈ 𝑎 ∃ 𝑛 ∈ 𝐽 ( 𝑛 ∩ 𝑎 ) = { 𝑝 } ) |
34 |
|
vex |
⊢ 𝑎 ∈ V |
35 |
|
ineq1 |
⊢ ( 𝑛 = ( 𝑓 ‘ 𝑝 ) → ( 𝑛 ∩ 𝑎 ) = ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) ) |
36 |
35
|
eqeq1d |
⊢ ( 𝑛 = ( 𝑓 ‘ 𝑝 ) → ( ( 𝑛 ∩ 𝑎 ) = { 𝑝 } ↔ ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) |
37 |
34 36
|
ac6s |
⊢ ( ∀ 𝑝 ∈ 𝑎 ∃ 𝑛 ∈ 𝐽 ( 𝑛 ∩ 𝑎 ) = { 𝑝 } → ∃ 𝑓 ( 𝑓 : 𝑎 ⟶ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) |
38 |
|
fvineqsnf1 |
⊢ ( ( 𝑓 : 𝑎 ⟶ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) → 𝑓 : 𝑎 –1-1→ 𝐽 ) |
39 |
|
simpr |
⊢ ( ( 𝑓 : 𝑎 ⟶ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) → ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) |
40 |
38 39
|
jca |
⊢ ( ( 𝑓 : 𝑎 ⟶ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) → ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) |
41 |
40
|
eximi |
⊢ ( ∃ 𝑓 ( 𝑓 : 𝑎 ⟶ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) → ∃ 𝑓 ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) |
42 |
30 33 37 41
|
4syl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑎 ⊆ 𝑋 ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) → ∃ 𝑓 ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) |
43 |
29 42
|
syl3an2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) → ∃ 𝑓 ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) |
44 |
5 43
|
syl3an1 |
⊢ ( ( 𝐽 ∈ 𝐶 ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) → ∃ 𝑓 ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) |
45 |
44
|
3adant1r |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ 𝑎 ≈ ω ) ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) → ∃ 𝑓 ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) |
46 |
|
simpr |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 : 𝑎 –1-1→ 𝐽 ) → 𝑓 : 𝑎 –1-1→ 𝐽 ) |
47 |
|
vsnid |
⊢ 𝑝 ∈ { 𝑝 } |
48 |
|
eleq2 |
⊢ ( ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } → ( 𝑝 ∈ ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) ↔ 𝑝 ∈ { 𝑝 } ) ) |
49 |
47 48
|
mpbiri |
⊢ ( ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } → 𝑝 ∈ ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) ) |
50 |
49
|
elin1d |
⊢ ( ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } → 𝑝 ∈ ( 𝑓 ‘ 𝑝 ) ) |
51 |
50
|
ralimi |
⊢ ( ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } → ∀ 𝑝 ∈ 𝑎 𝑝 ∈ ( 𝑓 ‘ 𝑝 ) ) |
52 |
|
ralssiun |
⊢ ( ∀ 𝑝 ∈ 𝑎 𝑝 ∈ ( 𝑓 ‘ 𝑝 ) → 𝑎 ⊆ ∪ 𝑝 ∈ 𝑎 ( 𝑓 ‘ 𝑝 ) ) |
53 |
51 52
|
syl |
⊢ ( ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } → 𝑎 ⊆ ∪ 𝑝 ∈ 𝑎 ( 𝑓 ‘ 𝑝 ) ) |
54 |
53
|
adantl |
⊢ ( ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) → 𝑎 ⊆ ∪ 𝑝 ∈ 𝑎 ( 𝑓 ‘ 𝑝 ) ) |
55 |
|
f1fn |
⊢ ( 𝑓 : 𝑎 –1-1→ 𝐽 → 𝑓 Fn 𝑎 ) |
56 |
|
fniunfv |
⊢ ( 𝑓 Fn 𝑎 → ∪ 𝑝 ∈ 𝑎 ( 𝑓 ‘ 𝑝 ) = ∪ ran 𝑓 ) |
57 |
55 56
|
syl |
⊢ ( 𝑓 : 𝑎 –1-1→ 𝐽 → ∪ 𝑝 ∈ 𝑎 ( 𝑓 ‘ 𝑝 ) = ∪ ran 𝑓 ) |
58 |
57
|
adantr |
⊢ ( ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) → ∪ 𝑝 ∈ 𝑎 ( 𝑓 ‘ 𝑝 ) = ∪ ran 𝑓 ) |
59 |
54 58
|
sseqtrd |
⊢ ( ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) → 𝑎 ⊆ ∪ ran 𝑓 ) |
60 |
1
|
cldopn |
⊢ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) → ( 𝑋 ∖ 𝑎 ) ∈ 𝐽 ) |
61 |
60
|
ad2antll |
⊢ ( ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ) → ( 𝑋 ∖ 𝑎 ) ∈ 𝐽 ) |
62 |
61
|
anim1i |
⊢ ( ( ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ) ∧ 𝑎 ⊆ ∪ ran 𝑓 ) → ( ( 𝑋 ∖ 𝑎 ) ∈ 𝐽 ∧ 𝑎 ⊆ ∪ ran 𝑓 ) ) |
63 |
62
|
ancomd |
⊢ ( ( ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ) ∧ 𝑎 ⊆ ∪ ran 𝑓 ) → ( 𝑎 ⊆ ∪ ran 𝑓 ∧ ( 𝑋 ∖ 𝑎 ) ∈ 𝐽 ) ) |
64 |
29
|
ad2antll |
⊢ ( ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ) → 𝑎 ⊆ 𝑋 ) |
65 |
64
|
anim1i |
⊢ ( ( ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ) ∧ ( 𝑎 ⊆ ∪ ran 𝑓 ∧ ( 𝑋 ∖ 𝑎 ) ∈ 𝐽 ) ) → ( 𝑎 ⊆ 𝑋 ∧ ( 𝑎 ⊆ ∪ ran 𝑓 ∧ ( 𝑋 ∖ 𝑎 ) ∈ 𝐽 ) ) ) |
66 |
|
unisng |
⊢ ( ( 𝑋 ∖ 𝑎 ) ∈ 𝐽 → ∪ { ( 𝑋 ∖ 𝑎 ) } = ( 𝑋 ∖ 𝑎 ) ) |
67 |
66
|
eqcomd |
⊢ ( ( 𝑋 ∖ 𝑎 ) ∈ 𝐽 → ( 𝑋 ∖ 𝑎 ) = ∪ { ( 𝑋 ∖ 𝑎 ) } ) |
68 |
|
eqimss |
⊢ ( ( 𝑋 ∖ 𝑎 ) = ∪ { ( 𝑋 ∖ 𝑎 ) } → ( 𝑋 ∖ 𝑎 ) ⊆ ∪ { ( 𝑋 ∖ 𝑎 ) } ) |
69 |
|
ssun4 |
⊢ ( ( 𝑋 ∖ 𝑎 ) ⊆ ∪ { ( 𝑋 ∖ 𝑎 ) } → ( 𝑋 ∖ 𝑎 ) ⊆ ( ∪ ran 𝑓 ∪ ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) |
70 |
|
uniun |
⊢ ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) = ( ∪ ran 𝑓 ∪ ∪ { ( 𝑋 ∖ 𝑎 ) } ) |
71 |
69 70
|
sseqtrrdi |
⊢ ( ( 𝑋 ∖ 𝑎 ) ⊆ ∪ { ( 𝑋 ∖ 𝑎 ) } → ( 𝑋 ∖ 𝑎 ) ⊆ ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) |
72 |
67 68 71
|
3syl |
⊢ ( ( 𝑋 ∖ 𝑎 ) ∈ 𝐽 → ( 𝑋 ∖ 𝑎 ) ⊆ ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) |
73 |
|
ssun3 |
⊢ ( 𝑎 ⊆ ∪ ran 𝑓 → 𝑎 ⊆ ( ∪ ran 𝑓 ∪ ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) |
74 |
73 70
|
sseqtrrdi |
⊢ ( 𝑎 ⊆ ∪ ran 𝑓 → 𝑎 ⊆ ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) |
75 |
|
uncom |
⊢ ( 𝑎 ∪ ( 𝑋 ∖ 𝑎 ) ) = ( ( 𝑋 ∖ 𝑎 ) ∪ 𝑎 ) |
76 |
|
undif1 |
⊢ ( ( 𝑋 ∖ 𝑎 ) ∪ 𝑎 ) = ( 𝑋 ∪ 𝑎 ) |
77 |
75 76
|
eqtri |
⊢ ( 𝑎 ∪ ( 𝑋 ∖ 𝑎 ) ) = ( 𝑋 ∪ 𝑎 ) |
78 |
|
ssequn2 |
⊢ ( 𝑎 ⊆ 𝑋 ↔ ( 𝑋 ∪ 𝑎 ) = 𝑋 ) |
79 |
78
|
biimpi |
⊢ ( 𝑎 ⊆ 𝑋 → ( 𝑋 ∪ 𝑎 ) = 𝑋 ) |
80 |
77 79
|
eqtrid |
⊢ ( 𝑎 ⊆ 𝑋 → ( 𝑎 ∪ ( 𝑋 ∖ 𝑎 ) ) = 𝑋 ) |
81 |
80
|
adantr |
⊢ ( ( 𝑎 ⊆ 𝑋 ∧ ( 𝑎 ⊆ ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∧ ( 𝑋 ∖ 𝑎 ) ⊆ ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) ) → ( 𝑎 ∪ ( 𝑋 ∖ 𝑎 ) ) = 𝑋 ) |
82 |
|
unss12 |
⊢ ( ( 𝑎 ⊆ ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∧ ( 𝑋 ∖ 𝑎 ) ⊆ ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) → ( 𝑎 ∪ ( 𝑋 ∖ 𝑎 ) ) ⊆ ( ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∪ ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) ) |
83 |
|
unidm |
⊢ ( ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∪ ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) = ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) |
84 |
82 83
|
sseqtrdi |
⊢ ( ( 𝑎 ⊆ ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∧ ( 𝑋 ∖ 𝑎 ) ⊆ ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) → ( 𝑎 ∪ ( 𝑋 ∖ 𝑎 ) ) ⊆ ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) |
85 |
84
|
adantl |
⊢ ( ( 𝑎 ⊆ 𝑋 ∧ ( 𝑎 ⊆ ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∧ ( 𝑋 ∖ 𝑎 ) ⊆ ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) ) → ( 𝑎 ∪ ( 𝑋 ∖ 𝑎 ) ) ⊆ ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) |
86 |
81 85
|
eqsstrrd |
⊢ ( ( 𝑎 ⊆ 𝑋 ∧ ( 𝑎 ⊆ ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∧ ( 𝑋 ∖ 𝑎 ) ⊆ ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) ) → 𝑋 ⊆ ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) |
87 |
74 86
|
sylanr1 |
⊢ ( ( 𝑎 ⊆ 𝑋 ∧ ( 𝑎 ⊆ ∪ ran 𝑓 ∧ ( 𝑋 ∖ 𝑎 ) ⊆ ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) ) → 𝑋 ⊆ ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) |
88 |
72 87
|
sylanr2 |
⊢ ( ( 𝑎 ⊆ 𝑋 ∧ ( 𝑎 ⊆ ∪ ran 𝑓 ∧ ( 𝑋 ∖ 𝑎 ) ∈ 𝐽 ) ) → 𝑋 ⊆ ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) |
89 |
88
|
adantl |
⊢ ( ( ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ) ∧ ( 𝑎 ⊆ 𝑋 ∧ ( 𝑎 ⊆ ∪ ran 𝑓 ∧ ( 𝑋 ∖ 𝑎 ) ∈ 𝐽 ) ) ) → 𝑋 ⊆ ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) |
90 |
|
f1f |
⊢ ( 𝑓 : 𝑎 –1-1→ 𝐽 → 𝑓 : 𝑎 ⟶ 𝐽 ) |
91 |
|
frn |
⊢ ( 𝑓 : 𝑎 ⟶ 𝐽 → ran 𝑓 ⊆ 𝐽 ) |
92 |
90 91
|
syl |
⊢ ( 𝑓 : 𝑎 –1-1→ 𝐽 → ran 𝑓 ⊆ 𝐽 ) |
93 |
1
|
topopn |
⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
94 |
1
|
difopn |
⊢ ( ( 𝑋 ∈ 𝐽 ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑋 ∖ 𝑎 ) ∈ 𝐽 ) |
95 |
93 94
|
sylan |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑋 ∖ 𝑎 ) ∈ 𝐽 ) |
96 |
95
|
snssd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) → { ( 𝑋 ∖ 𝑎 ) } ⊆ 𝐽 ) |
97 |
|
unss12 |
⊢ ( ( ran 𝑓 ⊆ 𝐽 ∧ { ( 𝑋 ∖ 𝑎 ) } ⊆ 𝐽 ) → ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ⊆ ( 𝐽 ∪ 𝐽 ) ) |
98 |
|
unidm |
⊢ ( 𝐽 ∪ 𝐽 ) = 𝐽 |
99 |
97 98
|
sseqtrdi |
⊢ ( ( ran 𝑓 ⊆ 𝐽 ∧ { ( 𝑋 ∖ 𝑎 ) } ⊆ 𝐽 ) → ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ⊆ 𝐽 ) |
100 |
92 96 99
|
syl2an |
⊢ ( ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ) → ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ⊆ 𝐽 ) |
101 |
|
uniss |
⊢ ( ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ⊆ 𝐽 → ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ⊆ ∪ 𝐽 ) |
102 |
101 1
|
sseqtrrdi |
⊢ ( ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ⊆ 𝐽 → ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ⊆ 𝑋 ) |
103 |
100 102
|
syl |
⊢ ( ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ) → ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ⊆ 𝑋 ) |
104 |
103
|
adantr |
⊢ ( ( ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ) ∧ ( 𝑎 ⊆ 𝑋 ∧ ( 𝑎 ⊆ ∪ ran 𝑓 ∧ ( 𝑋 ∖ 𝑎 ) ∈ 𝐽 ) ) ) → ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ⊆ 𝑋 ) |
105 |
89 104
|
eqssd |
⊢ ( ( ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ) ∧ ( 𝑎 ⊆ 𝑋 ∧ ( 𝑎 ⊆ ∪ ran 𝑓 ∧ ( 𝑋 ∖ 𝑎 ) ∈ 𝐽 ) ) ) → 𝑋 = ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) |
106 |
65 105
|
syldan |
⊢ ( ( ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ) ∧ ( 𝑎 ⊆ ∪ ran 𝑓 ∧ ( 𝑋 ∖ 𝑎 ) ∈ 𝐽 ) ) → 𝑋 = ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) |
107 |
63 106
|
syldan |
⊢ ( ( ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ) ∧ 𝑎 ⊆ ∪ ran 𝑓 ) → 𝑋 = ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) |
108 |
59 107
|
sylan2 |
⊢ ( ( ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ) ∧ ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → 𝑋 = ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) |
109 |
108
|
ancom1s |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 : 𝑎 –1-1→ 𝐽 ) ∧ ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → 𝑋 = ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) |
110 |
109
|
ex |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 : 𝑎 –1-1→ 𝐽 ) → ( ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) → 𝑋 = ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) ) |
111 |
46 110
|
mpand |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 : 𝑎 –1-1→ 𝐽 ) → ( ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } → 𝑋 = ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) ) |
112 |
111
|
impr |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → 𝑋 = ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) |
113 |
112
|
adantlrr |
⊢ ( ( ( 𝐽 ∈ Top ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) ∧ ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → 𝑋 = ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) |
114 |
5 113
|
sylanl1 |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) ∧ ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → 𝑋 = ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) |
115 |
|
vex |
⊢ 𝑓 ∈ V |
116 |
|
f1f1orn |
⊢ ( 𝑓 : 𝑎 –1-1→ 𝐽 → 𝑓 : 𝑎 –1-1-onto→ ran 𝑓 ) |
117 |
|
f1oen3g |
⊢ ( ( 𝑓 ∈ V ∧ 𝑓 : 𝑎 –1-1-onto→ ran 𝑓 ) → 𝑎 ≈ ran 𝑓 ) |
118 |
115 116 117
|
sylancr |
⊢ ( 𝑓 : 𝑎 –1-1→ 𝐽 → 𝑎 ≈ ran 𝑓 ) |
119 |
|
enen1 |
⊢ ( 𝑎 ≈ ran 𝑓 → ( 𝑎 ≈ ω ↔ ran 𝑓 ≈ ω ) ) |
120 |
|
endom |
⊢ ( ran 𝑓 ≈ ω → ran 𝑓 ≼ ω ) |
121 |
|
snfi |
⊢ { ( 𝑋 ∖ 𝑎 ) } ∈ Fin |
122 |
|
isfinite |
⊢ ( { ( 𝑋 ∖ 𝑎 ) } ∈ Fin ↔ { ( 𝑋 ∖ 𝑎 ) } ≺ ω ) |
123 |
121 122
|
mpbi |
⊢ { ( 𝑋 ∖ 𝑎 ) } ≺ ω |
124 |
|
sdomdom |
⊢ ( { ( 𝑋 ∖ 𝑎 ) } ≺ ω → { ( 𝑋 ∖ 𝑎 ) } ≼ ω ) |
125 |
123 124
|
ax-mp |
⊢ { ( 𝑋 ∖ 𝑎 ) } ≼ ω |
126 |
|
unctb |
⊢ ( ( ran 𝑓 ≼ ω ∧ { ( 𝑋 ∖ 𝑎 ) } ≼ ω ) → ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ≼ ω ) |
127 |
120 125 126
|
sylancl |
⊢ ( ran 𝑓 ≈ ω → ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ≼ ω ) |
128 |
119 127
|
biimtrdi |
⊢ ( 𝑎 ≈ ran 𝑓 → ( 𝑎 ≈ ω → ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ≼ ω ) ) |
129 |
118 128
|
syl |
⊢ ( 𝑓 : 𝑎 –1-1→ 𝐽 → ( 𝑎 ≈ ω → ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ≼ ω ) ) |
130 |
129
|
impcom |
⊢ ( ( 𝑎 ≈ ω ∧ 𝑓 : 𝑎 –1-1→ 𝐽 ) → ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ≼ ω ) |
131 |
130
|
adantll |
⊢ ( ( ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ∧ 𝑓 : 𝑎 –1-1→ 𝐽 ) → ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ≼ ω ) |
132 |
131
|
ad2ant2lr |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) ∧ ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ≼ ω ) |
133 |
100
|
ancoms |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 : 𝑎 –1-1→ 𝐽 ) → ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ⊆ 𝐽 ) |
134 |
133
|
adantrr |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ⊆ 𝐽 ) |
135 |
134
|
adantlrr |
⊢ ( ( ( 𝐽 ∈ Top ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) ∧ ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ⊆ 𝐽 ) |
136 |
5 135
|
sylanl1 |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) ∧ ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ⊆ 𝐽 ) |
137 |
|
elpw2g |
⊢ ( 𝐽 ∈ 𝐶 → ( ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∈ 𝒫 𝐽 ↔ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ⊆ 𝐽 ) ) |
138 |
137
|
biimprd |
⊢ ( 𝐽 ∈ 𝐶 → ( ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ⊆ 𝐽 → ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∈ 𝒫 𝐽 ) ) |
139 |
138
|
ad2antrr |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) ∧ ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → ( ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ⊆ 𝐽 → ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∈ 𝒫 𝐽 ) ) |
140 |
136 139
|
mpd |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) ∧ ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∈ 𝒫 𝐽 ) |
141 |
4
|
simprbi |
⊢ ( 𝐽 ∈ 𝐶 → ∀ 𝑦 ∈ 𝒫 𝐽 ( ( 𝑋 = ∪ 𝑦 ∧ 𝑦 ≼ ω ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) |
142 |
|
unieq |
⊢ ( 𝑠 = 𝑧 → ∪ 𝑠 = ∪ 𝑧 ) |
143 |
142
|
eqeq2d |
⊢ ( 𝑠 = 𝑧 → ( 𝑋 = ∪ 𝑠 ↔ 𝑋 = ∪ 𝑧 ) ) |
144 |
143
|
cbvrexvw |
⊢ ( ∃ 𝑠 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑠 ↔ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) |
145 |
144
|
imbi2i |
⊢ ( ( ( 𝑋 = ∪ 𝑦 ∧ 𝑦 ≼ ω ) → ∃ 𝑠 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑠 ) ↔ ( ( 𝑋 = ∪ 𝑦 ∧ 𝑦 ≼ ω ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) |
146 |
145
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝒫 𝐽 ( ( 𝑋 = ∪ 𝑦 ∧ 𝑦 ≼ ω ) → ∃ 𝑠 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑠 ) ↔ ∀ 𝑦 ∈ 𝒫 𝐽 ( ( 𝑋 = ∪ 𝑦 ∧ 𝑦 ≼ ω ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) |
147 |
141 146
|
sylibr |
⊢ ( 𝐽 ∈ 𝐶 → ∀ 𝑦 ∈ 𝒫 𝐽 ( ( 𝑋 = ∪ 𝑦 ∧ 𝑦 ≼ ω ) → ∃ 𝑠 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑠 ) ) |
148 |
|
unieq |
⊢ ( 𝑦 = ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) → ∪ 𝑦 = ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) |
149 |
148
|
eqeq2d |
⊢ ( 𝑦 = ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) → ( 𝑋 = ∪ 𝑦 ↔ 𝑋 = ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) ) |
150 |
|
breq1 |
⊢ ( 𝑦 = ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) → ( 𝑦 ≼ ω ↔ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ≼ ω ) ) |
151 |
149 150
|
anbi12d |
⊢ ( 𝑦 = ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) → ( ( 𝑋 = ∪ 𝑦 ∧ 𝑦 ≼ ω ) ↔ ( 𝑋 = ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∧ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ≼ ω ) ) ) |
152 |
|
pweq |
⊢ ( 𝑦 = ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) → 𝒫 𝑦 = 𝒫 ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) |
153 |
152
|
ineq1d |
⊢ ( 𝑦 = ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) → ( 𝒫 𝑦 ∩ Fin ) = ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∩ Fin ) ) |
154 |
153
|
rexeqdv |
⊢ ( 𝑦 = ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) → ( ∃ 𝑠 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑠 ↔ ∃ 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∩ Fin ) 𝑋 = ∪ 𝑠 ) ) |
155 |
151 154
|
imbi12d |
⊢ ( 𝑦 = ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) → ( ( ( 𝑋 = ∪ 𝑦 ∧ 𝑦 ≼ ω ) → ∃ 𝑠 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑠 ) ↔ ( ( 𝑋 = ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∧ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ≼ ω ) → ∃ 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∩ Fin ) 𝑋 = ∪ 𝑠 ) ) ) |
156 |
155
|
rspccv |
⊢ ( ∀ 𝑦 ∈ 𝒫 𝐽 ( ( 𝑋 = ∪ 𝑦 ∧ 𝑦 ≼ ω ) → ∃ 𝑠 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑠 ) → ( ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∈ 𝒫 𝐽 → ( ( 𝑋 = ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∧ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ≼ ω ) → ∃ 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∩ Fin ) 𝑋 = ∪ 𝑠 ) ) ) |
157 |
147 156
|
syl |
⊢ ( 𝐽 ∈ 𝐶 → ( ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∈ 𝒫 𝐽 → ( ( 𝑋 = ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∧ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ≼ ω ) → ∃ 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∩ Fin ) 𝑋 = ∪ 𝑠 ) ) ) |
158 |
157
|
ad2antrr |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) ∧ ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → ( ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∈ 𝒫 𝐽 → ( ( 𝑋 = ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∧ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ≼ ω ) → ∃ 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∩ Fin ) 𝑋 = ∪ 𝑠 ) ) ) |
159 |
140 158
|
mpd |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) ∧ ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → ( ( 𝑋 = ∪ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∧ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ≼ ω ) → ∃ 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∩ Fin ) 𝑋 = ∪ 𝑠 ) ) |
160 |
114 132 159
|
mp2and |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) ∧ ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → ∃ 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∩ Fin ) 𝑋 = ∪ 𝑠 ) |
161 |
|
df-rex |
⊢ ( ∃ 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∩ Fin ) 𝑋 = ∪ 𝑠 ↔ ∃ 𝑠 ( 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑠 ) ) |
162 |
|
elinel1 |
⊢ ( 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∩ Fin ) → 𝑠 ∈ 𝒫 ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) |
163 |
|
velpw |
⊢ ( 𝑠 ∈ 𝒫 ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ↔ 𝑠 ⊆ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ) |
164 |
|
ssdif |
⊢ ( 𝑠 ⊆ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) → ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ⊆ ( ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∖ { ( 𝑋 ∖ 𝑎 ) } ) ) |
165 |
|
difun2 |
⊢ ( ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∖ { ( 𝑋 ∖ 𝑎 ) } ) = ( ran 𝑓 ∖ { ( 𝑋 ∖ 𝑎 ) } ) |
166 |
164 165
|
sseqtrdi |
⊢ ( 𝑠 ⊆ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) → ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ⊆ ( ran 𝑓 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ) |
167 |
166
|
difss2d |
⊢ ( 𝑠 ⊆ ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) → ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ⊆ ran 𝑓 ) |
168 |
163 167
|
sylbi |
⊢ ( 𝑠 ∈ 𝒫 ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) → ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ⊆ ran 𝑓 ) |
169 |
162 168
|
syl |
⊢ ( 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∩ Fin ) → ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ⊆ ran 𝑓 ) |
170 |
169
|
a1i |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑎 ⊆ 𝑋 ) → ( 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∩ Fin ) → ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ⊆ ran 𝑓 ) ) |
171 |
|
sseq2 |
⊢ ( 𝑋 = ∪ 𝑠 → ( 𝑎 ⊆ 𝑋 ↔ 𝑎 ⊆ ∪ 𝑠 ) ) |
172 |
|
uniexg |
⊢ ( 𝐽 ∈ Top → ∪ 𝐽 ∈ V ) |
173 |
1 172
|
eqeltrid |
⊢ ( 𝐽 ∈ Top → 𝑋 ∈ V ) |
174 |
|
difexg |
⊢ ( 𝑋 ∈ V → ( 𝑋 ∖ 𝑎 ) ∈ V ) |
175 |
|
unisng |
⊢ ( ( 𝑋 ∖ 𝑎 ) ∈ V → ∪ { ( 𝑋 ∖ 𝑎 ) } = ( 𝑋 ∖ 𝑎 ) ) |
176 |
173 174 175
|
3syl |
⊢ ( 𝐽 ∈ Top → ∪ { ( 𝑋 ∖ 𝑎 ) } = ( 𝑋 ∖ 𝑎 ) ) |
177 |
176
|
ineq2d |
⊢ ( 𝐽 ∈ Top → ( 𝑎 ∩ ∪ { ( 𝑋 ∖ 𝑎 ) } ) = ( 𝑎 ∩ ( 𝑋 ∖ 𝑎 ) ) ) |
178 |
|
disjdif |
⊢ ( 𝑎 ∩ ( 𝑋 ∖ 𝑎 ) ) = ∅ |
179 |
177 178
|
eqtrdi |
⊢ ( 𝐽 ∈ Top → ( 𝑎 ∩ ∪ { ( 𝑋 ∖ 𝑎 ) } ) = ∅ ) |
180 |
|
inunissunidif |
⊢ ( ( 𝑎 ∩ ∪ { ( 𝑋 ∖ 𝑎 ) } ) = ∅ → ( 𝑎 ⊆ ∪ 𝑠 ↔ 𝑎 ⊆ ∪ ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ) ) |
181 |
179 180
|
syl |
⊢ ( 𝐽 ∈ Top → ( 𝑎 ⊆ ∪ 𝑠 ↔ 𝑎 ⊆ ∪ ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ) ) |
182 |
171 181
|
sylan9bbr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 = ∪ 𝑠 ) → ( 𝑎 ⊆ 𝑋 ↔ 𝑎 ⊆ ∪ ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ) ) |
183 |
182
|
biimpd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 = ∪ 𝑠 ) → ( 𝑎 ⊆ 𝑋 → 𝑎 ⊆ ∪ ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ) ) |
184 |
183
|
impancom |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑎 ⊆ 𝑋 ) → ( 𝑋 = ∪ 𝑠 → 𝑎 ⊆ ∪ ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ) ) |
185 |
170 184
|
anim12d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑎 ⊆ 𝑋 ) → ( ( 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑠 ) → ( ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ⊆ ran 𝑓 ∧ 𝑎 ⊆ ∪ ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ) ) ) |
186 |
5 29 185
|
syl2an |
⊢ ( ( 𝐽 ∈ 𝐶 ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑠 ) → ( ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ⊆ ran 𝑓 ∧ 𝑎 ⊆ ∪ ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ) ) ) |
187 |
186
|
adantrr |
⊢ ( ( 𝐽 ∈ 𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) → ( ( 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑠 ) → ( ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ⊆ ran 𝑓 ∧ 𝑎 ⊆ ∪ ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ) ) ) |
188 |
187
|
anim2d |
⊢ ( ( 𝐽 ∈ 𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) → ( ( ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ∧ ( 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑠 ) ) → ( ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ∧ ( ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ⊆ ran 𝑓 ∧ 𝑎 ⊆ ∪ ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ) ) ) ) |
189 |
118
|
ad2antrr |
⊢ ( ( ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ∧ ( ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ⊆ ran 𝑓 ∧ 𝑎 ⊆ ∪ ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ) ) → 𝑎 ≈ ran 𝑓 ) |
190 |
|
fvineqsneq |
⊢ ( ( ( 𝑓 Fn 𝑎 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ∧ ( ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ⊆ ran 𝑓 ∧ 𝑎 ⊆ ∪ ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ) ) → ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) = ran 𝑓 ) |
191 |
55 190
|
sylanl1 |
⊢ ( ( ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ∧ ( ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ⊆ ran 𝑓 ∧ 𝑎 ⊆ ∪ ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ) ) → ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) = ran 𝑓 ) |
192 |
|
vex |
⊢ 𝑠 ∈ V |
193 |
|
difss |
⊢ ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ⊆ 𝑠 |
194 |
|
ssdomg |
⊢ ( 𝑠 ∈ V → ( ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ⊆ 𝑠 → ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ≼ 𝑠 ) ) |
195 |
192 193 194
|
mp2 |
⊢ ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ≼ 𝑠 |
196 |
191 195
|
eqbrtrrdi |
⊢ ( ( ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ∧ ( ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ⊆ ran 𝑓 ∧ 𝑎 ⊆ ∪ ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ) ) → ran 𝑓 ≼ 𝑠 ) |
197 |
|
endomtr |
⊢ ( ( 𝑎 ≈ ran 𝑓 ∧ ran 𝑓 ≼ 𝑠 ) → 𝑎 ≼ 𝑠 ) |
198 |
189 196 197
|
syl2anc |
⊢ ( ( ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ∧ ( ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ⊆ ran 𝑓 ∧ 𝑎 ⊆ ∪ ( 𝑠 ∖ { ( 𝑋 ∖ 𝑎 ) } ) ) ) → 𝑎 ≼ 𝑠 ) |
199 |
188 198
|
syl6 |
⊢ ( ( 𝐽 ∈ 𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) → ( ( ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ∧ ( 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑠 ) ) → 𝑎 ≼ 𝑠 ) ) |
200 |
199
|
expdimp |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) ∧ ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → ( ( 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑠 ) → 𝑎 ≼ 𝑠 ) ) |
201 |
|
elinel2 |
⊢ ( 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∩ Fin ) → 𝑠 ∈ Fin ) |
202 |
201
|
adantr |
⊢ ( ( 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑠 ) → 𝑠 ∈ Fin ) |
203 |
202
|
a1i |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) ∧ ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → ( ( 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑠 ) → 𝑠 ∈ Fin ) ) |
204 |
200 203
|
jcad |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) ∧ ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → ( ( 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑠 ) → ( 𝑎 ≼ 𝑠 ∧ 𝑠 ∈ Fin ) ) ) |
205 |
204
|
eximdv |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) ∧ ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → ( ∃ 𝑠 ( 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑠 ) → ∃ 𝑠 ( 𝑎 ≼ 𝑠 ∧ 𝑠 ∈ Fin ) ) ) |
206 |
161 205
|
biimtrid |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) ∧ ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → ( ∃ 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋 ∖ 𝑎 ) } ) ∩ Fin ) 𝑋 = ∪ 𝑠 → ∃ 𝑠 ( 𝑎 ≼ 𝑠 ∧ 𝑠 ∈ Fin ) ) ) |
207 |
160 206
|
mpd |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) ∧ ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → ∃ 𝑠 ( 𝑎 ≼ 𝑠 ∧ 𝑠 ∈ Fin ) ) |
208 |
207
|
ex |
⊢ ( ( 𝐽 ∈ 𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) → ( ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) → ∃ 𝑠 ( 𝑎 ≼ 𝑠 ∧ 𝑠 ∈ Fin ) ) ) |
209 |
208
|
exlimdv |
⊢ ( ( 𝐽 ∈ 𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) → ( ∃ 𝑓 ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) → ∃ 𝑠 ( 𝑎 ≼ 𝑠 ∧ 𝑠 ∈ Fin ) ) ) |
210 |
209
|
anass1rs |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ 𝑎 ≈ ω ) ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∃ 𝑓 ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) → ∃ 𝑠 ( 𝑎 ≼ 𝑠 ∧ 𝑠 ∈ Fin ) ) ) |
211 |
210
|
3adant3 |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ 𝑎 ≈ ω ) ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) → ( ∃ 𝑓 ( 𝑓 : 𝑎 –1-1→ 𝐽 ∧ ∀ 𝑝 ∈ 𝑎 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) → ∃ 𝑠 ( 𝑎 ≼ 𝑠 ∧ 𝑠 ∈ Fin ) ) ) |
212 |
45 211
|
mpd |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ 𝑎 ≈ ω ) ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) → ∃ 𝑠 ( 𝑎 ≼ 𝑠 ∧ 𝑠 ∈ Fin ) ) |
213 |
18 27 28 212
|
syl3anc |
⊢ ( ( ( ( 𝐽 ∈ 𝐶 ∧ 𝑎 ≈ ω ) ∧ 𝑎 ⊆ 𝑋 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) → ∃ 𝑠 ( 𝑎 ≼ 𝑠 ∧ 𝑠 ∈ Fin ) ) |
214 |
213
|
anasss |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ 𝑎 ≈ ω ) ∧ ( 𝑎 ⊆ 𝑋 ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) ) → ∃ 𝑠 ( 𝑎 ≼ 𝑠 ∧ 𝑠 ∈ Fin ) ) |
215 |
|
isfinite |
⊢ ( 𝑠 ∈ Fin ↔ 𝑠 ≺ ω ) |
216 |
|
domsdomtr |
⊢ ( ( 𝑎 ≼ 𝑠 ∧ 𝑠 ≺ ω ) → 𝑎 ≺ ω ) |
217 |
215 216
|
sylan2b |
⊢ ( ( 𝑎 ≼ 𝑠 ∧ 𝑠 ∈ Fin ) → 𝑎 ≺ ω ) |
218 |
217
|
exlimiv |
⊢ ( ∃ 𝑠 ( 𝑎 ≼ 𝑠 ∧ 𝑠 ∈ Fin ) → 𝑎 ≺ ω ) |
219 |
|
sdomnen |
⊢ ( 𝑎 ≺ ω → ¬ 𝑎 ≈ ω ) |
220 |
214 218 219
|
3syl |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ 𝑎 ≈ ω ) ∧ ( 𝑎 ⊆ 𝑋 ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) ) → ¬ 𝑎 ≈ ω ) |
221 |
17 220
|
pm2.65da |
⊢ ( ( 𝐽 ∈ 𝐶 ∧ 𝑎 ≈ ω ) → ¬ ( 𝑎 ⊆ 𝑋 ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) ) |
222 |
|
imnan |
⊢ ( ( 𝑎 ⊆ 𝑋 → ¬ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) ↔ ¬ ( 𝑎 ⊆ 𝑋 ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) ) |
223 |
221 222
|
sylibr |
⊢ ( ( 𝐽 ∈ 𝐶 ∧ 𝑎 ≈ ω ) → ( 𝑎 ⊆ 𝑋 → ¬ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) ) |
224 |
223
|
imp |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ 𝑎 ≈ ω ) ∧ 𝑎 ⊆ 𝑋 ) → ¬ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) |
225 |
|
neq0 |
⊢ ( ¬ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ↔ ∃ 𝑠 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ) |
226 |
224 225
|
sylib |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ 𝑎 ≈ ω ) ∧ 𝑎 ⊆ 𝑋 ) → ∃ 𝑠 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ) |
227 |
1
|
lpss |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑎 ⊆ 𝑋 ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ⊆ 𝑋 ) |
228 |
5 227
|
sylan |
⊢ ( ( 𝐽 ∈ 𝐶 ∧ 𝑎 ⊆ 𝑋 ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ⊆ 𝑋 ) |
229 |
228
|
adantlr |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ 𝑎 ≈ ω ) ∧ 𝑎 ⊆ 𝑋 ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ⊆ 𝑋 ) |
230 |
229
|
sseld |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ 𝑎 ≈ ω ) ∧ 𝑎 ⊆ 𝑋 ) → ( 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) → 𝑠 ∈ 𝑋 ) ) |
231 |
230
|
ancrd |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ 𝑎 ≈ ω ) ∧ 𝑎 ⊆ 𝑋 ) → ( 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) → ( 𝑠 ∈ 𝑋 ∧ 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ) ) ) |
232 |
231
|
eximdv |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ 𝑎 ≈ ω ) ∧ 𝑎 ⊆ 𝑋 ) → ( ∃ 𝑠 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) → ∃ 𝑠 ( 𝑠 ∈ 𝑋 ∧ 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ) ) ) |
233 |
|
df-rex |
⊢ ( ∃ 𝑠 ∈ 𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ↔ ∃ 𝑠 ( 𝑠 ∈ 𝑋 ∧ 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ) ) |
234 |
232 233
|
imbitrrdi |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ 𝑎 ≈ ω ) ∧ 𝑎 ⊆ 𝑋 ) → ( ∃ 𝑠 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) → ∃ 𝑠 ∈ 𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ) ) |
235 |
226 234
|
mpd |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ 𝑎 ≈ ω ) ∧ 𝑎 ⊆ 𝑋 ) → ∃ 𝑠 ∈ 𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ) |
236 |
16 235
|
sylan2 |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ 𝑎 ≈ ω ) ∧ ( 𝑏 ⊆ 𝑋 ∧ 𝑎 ⊆ 𝑏 ) ) → ∃ 𝑠 ∈ 𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ) |
237 |
1
|
lpss3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑏 ⊆ 𝑋 ∧ 𝑎 ⊆ 𝑏 ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) |
238 |
237
|
3expb |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑏 ⊆ 𝑋 ∧ 𝑎 ⊆ 𝑏 ) ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) |
239 |
5 238
|
sylan |
⊢ ( ( 𝐽 ∈ 𝐶 ∧ ( 𝑏 ⊆ 𝑋 ∧ 𝑎 ⊆ 𝑏 ) ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) |
240 |
239
|
adantlr |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ 𝑎 ≈ ω ) ∧ ( 𝑏 ⊆ 𝑋 ∧ 𝑎 ⊆ 𝑏 ) ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) |
241 |
240
|
sseld |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ 𝑎 ≈ ω ) ∧ ( 𝑏 ⊆ 𝑋 ∧ 𝑎 ⊆ 𝑏 ) ) → ( 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) → 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) ) |
242 |
241
|
reximdv |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ 𝑎 ≈ ω ) ∧ ( 𝑏 ⊆ 𝑋 ∧ 𝑎 ⊆ 𝑏 ) ) → ( ∃ 𝑠 ∈ 𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) → ∃ 𝑠 ∈ 𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) ) |
243 |
236 242
|
mpd |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ 𝑎 ≈ ω ) ∧ ( 𝑏 ⊆ 𝑋 ∧ 𝑎 ⊆ 𝑏 ) ) → ∃ 𝑠 ∈ 𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) |
244 |
243
|
an42s |
⊢ ( ( ( 𝐽 ∈ 𝐶 ∧ 𝑏 ⊆ 𝑋 ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑎 ≈ ω ) ) → ∃ 𝑠 ∈ 𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) |
245 |
244
|
ex |
⊢ ( ( 𝐽 ∈ 𝐶 ∧ 𝑏 ⊆ 𝑋 ) → ( ( 𝑎 ⊆ 𝑏 ∧ 𝑎 ≈ ω ) → ∃ 𝑠 ∈ 𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) ) |
246 |
245
|
exlimdv |
⊢ ( ( 𝐽 ∈ 𝐶 ∧ 𝑏 ⊆ 𝑋 ) → ( ∃ 𝑎 ( 𝑎 ⊆ 𝑏 ∧ 𝑎 ≈ ω ) → ∃ 𝑠 ∈ 𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) ) |
247 |
246
|
adantrr |
⊢ ( ( 𝐽 ∈ 𝐶 ∧ ( 𝑏 ⊆ 𝑋 ∧ ¬ 𝑏 ∈ Fin ) ) → ( ∃ 𝑎 ( 𝑎 ⊆ 𝑏 ∧ 𝑎 ≈ ω ) → ∃ 𝑠 ∈ 𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) ) |
248 |
14 247
|
mpd |
⊢ ( ( 𝐽 ∈ 𝐶 ∧ ( 𝑏 ⊆ 𝑋 ∧ ¬ 𝑏 ∈ Fin ) ) → ∃ 𝑠 ∈ 𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) |
249 |
8 248
|
sylan2b |
⊢ ( ( 𝐽 ∈ 𝐶 ∧ ( 𝑏 ∈ 𝒫 𝑋 ∧ ¬ 𝑏 ∈ Fin ) ) → ∃ 𝑠 ∈ 𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) |
250 |
6 249
|
sylan2b |
⊢ ( ( 𝐽 ∈ 𝐶 ∧ 𝑏 ∈ ( 𝒫 𝑋 ∖ Fin ) ) → ∃ 𝑠 ∈ 𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) |
251 |
250
|
ralrimiva |
⊢ ( 𝐽 ∈ 𝐶 → ∀ 𝑏 ∈ ( 𝒫 𝑋 ∖ Fin ) ∃ 𝑠 ∈ 𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) |
252 |
|
simpr |
⊢ ( ( 𝑦 = 𝑏 ∧ 𝑧 = 𝑠 ) → 𝑧 = 𝑠 ) |
253 |
|
fveq2 |
⊢ ( 𝑦 = 𝑏 → ( ( limPt ‘ 𝐽 ) ‘ 𝑦 ) = ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) |
254 |
253
|
adantr |
⊢ ( ( 𝑦 = 𝑏 ∧ 𝑧 = 𝑠 ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑦 ) = ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) |
255 |
252 254
|
eleq12d |
⊢ ( ( 𝑦 = 𝑏 ∧ 𝑧 = 𝑠 ) → ( 𝑧 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑦 ) ↔ 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) ) |
256 |
255
|
cbvrexdva |
⊢ ( 𝑦 = 𝑏 → ( ∃ 𝑧 ∈ 𝑋 𝑧 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑦 ) ↔ ∃ 𝑠 ∈ 𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) ) |
257 |
256
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ ( 𝒫 𝑋 ∖ Fin ) ∃ 𝑧 ∈ 𝑋 𝑧 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑦 ) ↔ ∀ 𝑏 ∈ ( 𝒫 𝑋 ∖ Fin ) ∃ 𝑠 ∈ 𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) |
258 |
251 257
|
sylibr |
⊢ ( 𝐽 ∈ 𝐶 → ∀ 𝑦 ∈ ( 𝒫 𝑋 ∖ Fin ) ∃ 𝑧 ∈ 𝑋 𝑧 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑦 ) ) |
259 |
1 3
|
pibp21 |
⊢ ( 𝐽 ∈ 𝑊 ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ ( 𝒫 𝑋 ∖ Fin ) ∃ 𝑧 ∈ 𝑋 𝑧 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑦 ) ) ) |
260 |
5 258 259
|
sylanbrc |
⊢ ( 𝐽 ∈ 𝐶 → 𝐽 ∈ 𝑊 ) |