Metamath Proof Explorer


Theorem pibt2

Description: Theorem T000002 of pi-base, a countably compact topology is also weakly countably compact. See pibp19 and pibp21 for the definitions of the relevant properties. This proof uses the axiom of choice. (Contributed by ML, 30-Mar-2021)

Ref Expression
Hypotheses pibt2.x 𝑋 = 𝐽
pibt2.19 𝐶 = { 𝑥 ∈ Top ∣ ∀ 𝑦 ∈ 𝒫 𝑥 ( ( 𝑥 = 𝑦𝑦 ≼ ω ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑥 = 𝑧 ) }
pibt2.21 𝑊 = { 𝑥 ∈ Top ∣ ∀ 𝑦 ∈ ( 𝒫 𝑥 ∖ Fin ) ∃ 𝑧 𝑥 𝑧 ∈ ( ( limPt ‘ 𝑥 ) ‘ 𝑦 ) }
Assertion pibt2 ( 𝐽𝐶𝐽𝑊 )

Proof

Step Hyp Ref Expression
1 pibt2.x 𝑋 = 𝐽
2 pibt2.19 𝐶 = { 𝑥 ∈ Top ∣ ∀ 𝑦 ∈ 𝒫 𝑥 ( ( 𝑥 = 𝑦𝑦 ≼ ω ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑥 = 𝑧 ) }
3 pibt2.21 𝑊 = { 𝑥 ∈ Top ∣ ∀ 𝑦 ∈ ( 𝒫 𝑥 ∖ Fin ) ∃ 𝑧 𝑥 𝑧 ∈ ( ( limPt ‘ 𝑥 ) ‘ 𝑦 ) }
4 1 2 pibp19 ( 𝐽𝐶 ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝐽 ( ( 𝑋 = 𝑦𝑦 ≼ ω ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) ) )
5 4 simplbi ( 𝐽𝐶𝐽 ∈ Top )
6 eldif ( 𝑏 ∈ ( 𝒫 𝑋 ∖ Fin ) ↔ ( 𝑏 ∈ 𝒫 𝑋 ∧ ¬ 𝑏 ∈ Fin ) )
7 velpw ( 𝑏 ∈ 𝒫 𝑋𝑏𝑋 )
8 7 anbi1i ( ( 𝑏 ∈ 𝒫 𝑋 ∧ ¬ 𝑏 ∈ Fin ) ↔ ( 𝑏𝑋 ∧ ¬ 𝑏 ∈ Fin ) )
9 vex 𝑏 ∈ V
10 infinf ( 𝑏 ∈ V → ( ¬ 𝑏 ∈ Fin ↔ ω ≼ 𝑏 ) )
11 9 10 ax-mp ( ¬ 𝑏 ∈ Fin ↔ ω ≼ 𝑏 )
12 9 infcntss ( ω ≼ 𝑏 → ∃ 𝑎 ( 𝑎𝑏𝑎 ≈ ω ) )
13 11 12 sylbi ( ¬ 𝑏 ∈ Fin → ∃ 𝑎 ( 𝑎𝑏𝑎 ≈ ω ) )
14 13 ad2antll ( ( 𝐽𝐶 ∧ ( 𝑏𝑋 ∧ ¬ 𝑏 ∈ Fin ) ) → ∃ 𝑎 ( 𝑎𝑏𝑎 ≈ ω ) )
15 sstr ( ( 𝑎𝑏𝑏𝑋 ) → 𝑎𝑋 )
16 15 ancoms ( ( 𝑏𝑋𝑎𝑏 ) → 𝑎𝑋 )
17 simplr ( ( ( 𝐽𝐶𝑎 ≈ ω ) ∧ ( 𝑎𝑋 ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) ) → 𝑎 ≈ ω )
18 simpll ( ( ( ( 𝐽𝐶𝑎 ≈ ω ) ∧ 𝑎𝑋 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) → ( 𝐽𝐶𝑎 ≈ ω ) )
19 0ss ∅ ⊆ 𝑎
20 sseq1 ( ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ → ( ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ⊆ 𝑎 ↔ ∅ ⊆ 𝑎 ) )
21 19 20 mpbiri ( ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ → ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ⊆ 𝑎 )
22 21 adantl ( ( ( 𝐽 ∈ Top ∧ 𝑎𝑋 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ⊆ 𝑎 )
23 1 cldlp ( ( 𝐽 ∈ Top ∧ 𝑎𝑋 ) → ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ⊆ 𝑎 ) )
24 23 adantr ( ( ( 𝐽 ∈ Top ∧ 𝑎𝑋 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) → ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ⊆ 𝑎 ) )
25 22 24 mpbird ( ( ( 𝐽 ∈ Top ∧ 𝑎𝑋 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) → 𝑎 ∈ ( Clsd ‘ 𝐽 ) )
26 5 25 sylanl1 ( ( ( 𝐽𝐶𝑎𝑋 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) → 𝑎 ∈ ( Clsd ‘ 𝐽 ) )
27 26 adantllr ( ( ( ( 𝐽𝐶𝑎 ≈ ω ) ∧ 𝑎𝑋 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) → 𝑎 ∈ ( Clsd ‘ 𝐽 ) )
28 simpr ( ( ( ( 𝐽𝐶𝑎 ≈ ω ) ∧ 𝑎𝑋 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ )
29 1 cldss ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) → 𝑎𝑋 )
30 1 nlpineqsn ( ( 𝐽 ∈ Top ∧ 𝑎𝑋 ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) → ∀ 𝑝𝑎𝑛𝐽 ( 𝑝𝑛 ∧ ( 𝑛𝑎 ) = { 𝑝 } ) )
31 simpr ( ( 𝑝𝑛 ∧ ( 𝑛𝑎 ) = { 𝑝 } ) → ( 𝑛𝑎 ) = { 𝑝 } )
32 31 reximi ( ∃ 𝑛𝐽 ( 𝑝𝑛 ∧ ( 𝑛𝑎 ) = { 𝑝 } ) → ∃ 𝑛𝐽 ( 𝑛𝑎 ) = { 𝑝 } )
33 32 ralimi ( ∀ 𝑝𝑎𝑛𝐽 ( 𝑝𝑛 ∧ ( 𝑛𝑎 ) = { 𝑝 } ) → ∀ 𝑝𝑎𝑛𝐽 ( 𝑛𝑎 ) = { 𝑝 } )
34 vex 𝑎 ∈ V
35 ineq1 ( 𝑛 = ( 𝑓𝑝 ) → ( 𝑛𝑎 ) = ( ( 𝑓𝑝 ) ∩ 𝑎 ) )
36 35 eqeq1d ( 𝑛 = ( 𝑓𝑝 ) → ( ( 𝑛𝑎 ) = { 𝑝 } ↔ ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) )
37 34 36 ac6s ( ∀ 𝑝𝑎𝑛𝐽 ( 𝑛𝑎 ) = { 𝑝 } → ∃ 𝑓 ( 𝑓 : 𝑎𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) )
38 fvineqsnf1 ( ( 𝑓 : 𝑎𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) → 𝑓 : 𝑎1-1𝐽 )
39 simpr ( ( 𝑓 : 𝑎𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) → ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } )
40 38 39 jca ( ( 𝑓 : 𝑎𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) → ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) )
41 40 eximi ( ∃ 𝑓 ( 𝑓 : 𝑎𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) → ∃ 𝑓 ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) )
42 30 33 37 41 4syl ( ( 𝐽 ∈ Top ∧ 𝑎𝑋 ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) → ∃ 𝑓 ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) )
43 29 42 syl3an2 ( ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) → ∃ 𝑓 ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) )
44 5 43 syl3an1 ( ( 𝐽𝐶𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) → ∃ 𝑓 ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) )
45 44 3adant1r ( ( ( 𝐽𝐶𝑎 ≈ ω ) ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) → ∃ 𝑓 ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) )
46 simpr ( ( ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 : 𝑎1-1𝐽 ) → 𝑓 : 𝑎1-1𝐽 )
47 vsnid 𝑝 ∈ { 𝑝 }
48 eleq2 ( ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } → ( 𝑝 ∈ ( ( 𝑓𝑝 ) ∩ 𝑎 ) ↔ 𝑝 ∈ { 𝑝 } ) )
49 47 48 mpbiri ( ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } → 𝑝 ∈ ( ( 𝑓𝑝 ) ∩ 𝑎 ) )
50 49 elin1d ( ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } → 𝑝 ∈ ( 𝑓𝑝 ) )
51 50 ralimi ( ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } → ∀ 𝑝𝑎 𝑝 ∈ ( 𝑓𝑝 ) )
52 ralssiun ( ∀ 𝑝𝑎 𝑝 ∈ ( 𝑓𝑝 ) → 𝑎 𝑝𝑎 ( 𝑓𝑝 ) )
53 51 52 syl ( ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } → 𝑎 𝑝𝑎 ( 𝑓𝑝 ) )
54 53 adantl ( ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) → 𝑎 𝑝𝑎 ( 𝑓𝑝 ) )
55 f1fn ( 𝑓 : 𝑎1-1𝐽𝑓 Fn 𝑎 )
56 fniunfv ( 𝑓 Fn 𝑎 𝑝𝑎 ( 𝑓𝑝 ) = ran 𝑓 )
57 55 56 syl ( 𝑓 : 𝑎1-1𝐽 𝑝𝑎 ( 𝑓𝑝 ) = ran 𝑓 )
58 57 adantr ( ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) → 𝑝𝑎 ( 𝑓𝑝 ) = ran 𝑓 )
59 54 58 sseqtrd ( ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) → 𝑎 ran 𝑓 )
60 1 cldopn ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) → ( 𝑋𝑎 ) ∈ 𝐽 )
61 60 ad2antll ( ( 𝑓 : 𝑎1-1𝐽 ∧ ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ) → ( 𝑋𝑎 ) ∈ 𝐽 )
62 61 anim1i ( ( ( 𝑓 : 𝑎1-1𝐽 ∧ ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ) ∧ 𝑎 ran 𝑓 ) → ( ( 𝑋𝑎 ) ∈ 𝐽𝑎 ran 𝑓 ) )
63 62 ancomd ( ( ( 𝑓 : 𝑎1-1𝐽 ∧ ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ) ∧ 𝑎 ran 𝑓 ) → ( 𝑎 ran 𝑓 ∧ ( 𝑋𝑎 ) ∈ 𝐽 ) )
64 29 ad2antll ( ( 𝑓 : 𝑎1-1𝐽 ∧ ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ) → 𝑎𝑋 )
65 64 anim1i ( ( ( 𝑓 : 𝑎1-1𝐽 ∧ ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ) ∧ ( 𝑎 ran 𝑓 ∧ ( 𝑋𝑎 ) ∈ 𝐽 ) ) → ( 𝑎𝑋 ∧ ( 𝑎 ran 𝑓 ∧ ( 𝑋𝑎 ) ∈ 𝐽 ) ) )
66 unisng ( ( 𝑋𝑎 ) ∈ 𝐽 { ( 𝑋𝑎 ) } = ( 𝑋𝑎 ) )
67 66 eqcomd ( ( 𝑋𝑎 ) ∈ 𝐽 → ( 𝑋𝑎 ) = { ( 𝑋𝑎 ) } )
68 eqimss ( ( 𝑋𝑎 ) = { ( 𝑋𝑎 ) } → ( 𝑋𝑎 ) ⊆ { ( 𝑋𝑎 ) } )
69 ssun4 ( ( 𝑋𝑎 ) ⊆ { ( 𝑋𝑎 ) } → ( 𝑋𝑎 ) ⊆ ( ran 𝑓 { ( 𝑋𝑎 ) } ) )
70 uniun ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) = ( ran 𝑓 { ( 𝑋𝑎 ) } )
71 69 70 sseqtrrdi ( ( 𝑋𝑎 ) ⊆ { ( 𝑋𝑎 ) } → ( 𝑋𝑎 ) ⊆ ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) )
72 67 68 71 3syl ( ( 𝑋𝑎 ) ∈ 𝐽 → ( 𝑋𝑎 ) ⊆ ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) )
73 ssun3 ( 𝑎 ran 𝑓𝑎 ⊆ ( ran 𝑓 { ( 𝑋𝑎 ) } ) )
74 73 70 sseqtrrdi ( 𝑎 ran 𝑓𝑎 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) )
75 uncom ( 𝑎 ∪ ( 𝑋𝑎 ) ) = ( ( 𝑋𝑎 ) ∪ 𝑎 )
76 undif1 ( ( 𝑋𝑎 ) ∪ 𝑎 ) = ( 𝑋𝑎 )
77 75 76 eqtri ( 𝑎 ∪ ( 𝑋𝑎 ) ) = ( 𝑋𝑎 )
78 ssequn2 ( 𝑎𝑋 ↔ ( 𝑋𝑎 ) = 𝑋 )
79 78 biimpi ( 𝑎𝑋 → ( 𝑋𝑎 ) = 𝑋 )
80 77 79 eqtrid ( 𝑎𝑋 → ( 𝑎 ∪ ( 𝑋𝑎 ) ) = 𝑋 )
81 80 adantr ( ( 𝑎𝑋 ∧ ( 𝑎 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∧ ( 𝑋𝑎 ) ⊆ ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ) ) → ( 𝑎 ∪ ( 𝑋𝑎 ) ) = 𝑋 )
82 unss12 ( ( 𝑎 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∧ ( 𝑋𝑎 ) ⊆ ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ) → ( 𝑎 ∪ ( 𝑋𝑎 ) ) ⊆ ( ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∪ ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ) )
83 unidm ( ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∪ ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ) = ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } )
84 82 83 sseqtrdi ( ( 𝑎 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∧ ( 𝑋𝑎 ) ⊆ ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ) → ( 𝑎 ∪ ( 𝑋𝑎 ) ) ⊆ ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) )
85 84 adantl ( ( 𝑎𝑋 ∧ ( 𝑎 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∧ ( 𝑋𝑎 ) ⊆ ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ) ) → ( 𝑎 ∪ ( 𝑋𝑎 ) ) ⊆ ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) )
86 81 85 eqsstrrd ( ( 𝑎𝑋 ∧ ( 𝑎 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∧ ( 𝑋𝑎 ) ⊆ ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ) ) → 𝑋 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) )
87 74 86 sylanr1 ( ( 𝑎𝑋 ∧ ( 𝑎 ran 𝑓 ∧ ( 𝑋𝑎 ) ⊆ ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ) ) → 𝑋 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) )
88 72 87 sylanr2 ( ( 𝑎𝑋 ∧ ( 𝑎 ran 𝑓 ∧ ( 𝑋𝑎 ) ∈ 𝐽 ) ) → 𝑋 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) )
89 88 adantl ( ( ( 𝑓 : 𝑎1-1𝐽 ∧ ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ) ∧ ( 𝑎𝑋 ∧ ( 𝑎 ran 𝑓 ∧ ( 𝑋𝑎 ) ∈ 𝐽 ) ) ) → 𝑋 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) )
90 f1f ( 𝑓 : 𝑎1-1𝐽𝑓 : 𝑎𝐽 )
91 frn ( 𝑓 : 𝑎𝐽 → ran 𝑓𝐽 )
92 90 91 syl ( 𝑓 : 𝑎1-1𝐽 → ran 𝑓𝐽 )
93 1 topopn ( 𝐽 ∈ Top → 𝑋𝐽 )
94 1 difopn ( ( 𝑋𝐽𝑎 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑋𝑎 ) ∈ 𝐽 )
95 93 94 sylan ( ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑋𝑎 ) ∈ 𝐽 )
96 95 snssd ( ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) → { ( 𝑋𝑎 ) } ⊆ 𝐽 )
97 unss12 ( ( ran 𝑓𝐽 ∧ { ( 𝑋𝑎 ) } ⊆ 𝐽 ) → ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ⊆ ( 𝐽𝐽 ) )
98 unidm ( 𝐽𝐽 ) = 𝐽
99 97 98 sseqtrdi ( ( ran 𝑓𝐽 ∧ { ( 𝑋𝑎 ) } ⊆ 𝐽 ) → ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ⊆ 𝐽 )
100 92 96 99 syl2an ( ( 𝑓 : 𝑎1-1𝐽 ∧ ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ) → ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ⊆ 𝐽 )
101 uniss ( ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ⊆ 𝐽 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ⊆ 𝐽 )
102 101 1 sseqtrrdi ( ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ⊆ 𝐽 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ⊆ 𝑋 )
103 100 102 syl ( ( 𝑓 : 𝑎1-1𝐽 ∧ ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ) → ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ⊆ 𝑋 )
104 103 adantr ( ( ( 𝑓 : 𝑎1-1𝐽 ∧ ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ) ∧ ( 𝑎𝑋 ∧ ( 𝑎 ran 𝑓 ∧ ( 𝑋𝑎 ) ∈ 𝐽 ) ) ) → ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ⊆ 𝑋 )
105 89 104 eqssd ( ( ( 𝑓 : 𝑎1-1𝐽 ∧ ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ) ∧ ( 𝑎𝑋 ∧ ( 𝑎 ran 𝑓 ∧ ( 𝑋𝑎 ) ∈ 𝐽 ) ) ) → 𝑋 = ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) )
106 65 105 syldan ( ( ( 𝑓 : 𝑎1-1𝐽 ∧ ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ) ∧ ( 𝑎 ran 𝑓 ∧ ( 𝑋𝑎 ) ∈ 𝐽 ) ) → 𝑋 = ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) )
107 63 106 syldan ( ( ( 𝑓 : 𝑎1-1𝐽 ∧ ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ) ∧ 𝑎 ran 𝑓 ) → 𝑋 = ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) )
108 59 107 sylan2 ( ( ( 𝑓 : 𝑎1-1𝐽 ∧ ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ) ∧ ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → 𝑋 = ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) )
109 108 ancom1s ( ( ( ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 : 𝑎1-1𝐽 ) ∧ ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → 𝑋 = ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) )
110 109 ex ( ( ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 : 𝑎1-1𝐽 ) → ( ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) → 𝑋 = ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ) )
111 46 110 mpand ( ( ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 : 𝑎1-1𝐽 ) → ( ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } → 𝑋 = ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ) )
112 111 impr ( ( ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → 𝑋 = ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) )
113 112 adantlrr ( ( ( 𝐽 ∈ Top ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) ∧ ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → 𝑋 = ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) )
114 5 113 sylanl1 ( ( ( 𝐽𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) ∧ ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → 𝑋 = ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) )
115 vex 𝑓 ∈ V
116 f1f1orn ( 𝑓 : 𝑎1-1𝐽𝑓 : 𝑎1-1-onto→ ran 𝑓 )
117 f1oen3g ( ( 𝑓 ∈ V ∧ 𝑓 : 𝑎1-1-onto→ ran 𝑓 ) → 𝑎 ≈ ran 𝑓 )
118 115 116 117 sylancr ( 𝑓 : 𝑎1-1𝐽𝑎 ≈ ran 𝑓 )
119 enen1 ( 𝑎 ≈ ran 𝑓 → ( 𝑎 ≈ ω ↔ ran 𝑓 ≈ ω ) )
120 endom ( ran 𝑓 ≈ ω → ran 𝑓 ≼ ω )
121 snfi { ( 𝑋𝑎 ) } ∈ Fin
122 isfinite ( { ( 𝑋𝑎 ) } ∈ Fin ↔ { ( 𝑋𝑎 ) } ≺ ω )
123 121 122 mpbi { ( 𝑋𝑎 ) } ≺ ω
124 sdomdom ( { ( 𝑋𝑎 ) } ≺ ω → { ( 𝑋𝑎 ) } ≼ ω )
125 123 124 ax-mp { ( 𝑋𝑎 ) } ≼ ω
126 unctb ( ( ran 𝑓 ≼ ω ∧ { ( 𝑋𝑎 ) } ≼ ω ) → ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ≼ ω )
127 120 125 126 sylancl ( ran 𝑓 ≈ ω → ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ≼ ω )
128 119 127 biimtrdi ( 𝑎 ≈ ran 𝑓 → ( 𝑎 ≈ ω → ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ≼ ω ) )
129 118 128 syl ( 𝑓 : 𝑎1-1𝐽 → ( 𝑎 ≈ ω → ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ≼ ω ) )
130 129 impcom ( ( 𝑎 ≈ ω ∧ 𝑓 : 𝑎1-1𝐽 ) → ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ≼ ω )
131 130 adantll ( ( ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ∧ 𝑓 : 𝑎1-1𝐽 ) → ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ≼ ω )
132 131 ad2ant2lr ( ( ( 𝐽𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) ∧ ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ≼ ω )
133 100 ancoms ( ( ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 : 𝑎1-1𝐽 ) → ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ⊆ 𝐽 )
134 133 adantrr ( ( ( 𝐽 ∈ Top ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) ∧ ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ⊆ 𝐽 )
135 134 adantlrr ( ( ( 𝐽 ∈ Top ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) ∧ ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ⊆ 𝐽 )
136 5 135 sylanl1 ( ( ( 𝐽𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) ∧ ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ⊆ 𝐽 )
137 elpw2g ( 𝐽𝐶 → ( ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∈ 𝒫 𝐽 ↔ ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ⊆ 𝐽 ) )
138 137 biimprd ( 𝐽𝐶 → ( ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ⊆ 𝐽 → ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∈ 𝒫 𝐽 ) )
139 138 ad2antrr ( ( ( 𝐽𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) ∧ ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → ( ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ⊆ 𝐽 → ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∈ 𝒫 𝐽 ) )
140 136 139 mpd ( ( ( 𝐽𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) ∧ ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∈ 𝒫 𝐽 )
141 4 simprbi ( 𝐽𝐶 → ∀ 𝑦 ∈ 𝒫 𝐽 ( ( 𝑋 = 𝑦𝑦 ≼ ω ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) )
142 unieq ( 𝑠 = 𝑧 𝑠 = 𝑧 )
143 142 eqeq2d ( 𝑠 = 𝑧 → ( 𝑋 = 𝑠𝑋 = 𝑧 ) )
144 143 cbvrexvw ( ∃ 𝑠 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑠 ↔ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 )
145 144 imbi2i ( ( ( 𝑋 = 𝑦𝑦 ≼ ω ) → ∃ 𝑠 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑠 ) ↔ ( ( 𝑋 = 𝑦𝑦 ≼ ω ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) )
146 145 ralbii ( ∀ 𝑦 ∈ 𝒫 𝐽 ( ( 𝑋 = 𝑦𝑦 ≼ ω ) → ∃ 𝑠 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑠 ) ↔ ∀ 𝑦 ∈ 𝒫 𝐽 ( ( 𝑋 = 𝑦𝑦 ≼ ω ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) )
147 141 146 sylibr ( 𝐽𝐶 → ∀ 𝑦 ∈ 𝒫 𝐽 ( ( 𝑋 = 𝑦𝑦 ≼ ω ) → ∃ 𝑠 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑠 ) )
148 unieq ( 𝑦 = ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) → 𝑦 = ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) )
149 148 eqeq2d ( 𝑦 = ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) → ( 𝑋 = 𝑦𝑋 = ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ) )
150 breq1 ( 𝑦 = ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) → ( 𝑦 ≼ ω ↔ ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ≼ ω ) )
151 149 150 anbi12d ( 𝑦 = ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) → ( ( 𝑋 = 𝑦𝑦 ≼ ω ) ↔ ( 𝑋 = ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∧ ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ≼ ω ) ) )
152 pweq ( 𝑦 = ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) → 𝒫 𝑦 = 𝒫 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) )
153 152 ineq1d ( 𝑦 = ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) → ( 𝒫 𝑦 ∩ Fin ) = ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∩ Fin ) )
154 153 rexeqdv ( 𝑦 = ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) → ( ∃ 𝑠 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑠 ↔ ∃ 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∩ Fin ) 𝑋 = 𝑠 ) )
155 151 154 imbi12d ( 𝑦 = ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) → ( ( ( 𝑋 = 𝑦𝑦 ≼ ω ) → ∃ 𝑠 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑠 ) ↔ ( ( 𝑋 = ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∧ ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ≼ ω ) → ∃ 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∩ Fin ) 𝑋 = 𝑠 ) ) )
156 155 rspccv ( ∀ 𝑦 ∈ 𝒫 𝐽 ( ( 𝑋 = 𝑦𝑦 ≼ ω ) → ∃ 𝑠 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑠 ) → ( ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∈ 𝒫 𝐽 → ( ( 𝑋 = ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∧ ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ≼ ω ) → ∃ 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∩ Fin ) 𝑋 = 𝑠 ) ) )
157 147 156 syl ( 𝐽𝐶 → ( ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∈ 𝒫 𝐽 → ( ( 𝑋 = ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∧ ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ≼ ω ) → ∃ 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∩ Fin ) 𝑋 = 𝑠 ) ) )
158 157 ad2antrr ( ( ( 𝐽𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) ∧ ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → ( ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∈ 𝒫 𝐽 → ( ( 𝑋 = ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∧ ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ≼ ω ) → ∃ 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∩ Fin ) 𝑋 = 𝑠 ) ) )
159 140 158 mpd ( ( ( 𝐽𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) ∧ ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → ( ( 𝑋 = ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∧ ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ≼ ω ) → ∃ 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∩ Fin ) 𝑋 = 𝑠 ) )
160 114 132 159 mp2and ( ( ( 𝐽𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) ∧ ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → ∃ 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∩ Fin ) 𝑋 = 𝑠 )
161 df-rex ( ∃ 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∩ Fin ) 𝑋 = 𝑠 ↔ ∃ 𝑠 ( 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∩ Fin ) ∧ 𝑋 = 𝑠 ) )
162 elinel1 ( 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∩ Fin ) → 𝑠 ∈ 𝒫 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) )
163 velpw ( 𝑠 ∈ 𝒫 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ↔ 𝑠 ⊆ ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) )
164 ssdif ( 𝑠 ⊆ ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) → ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) ⊆ ( ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∖ { ( 𝑋𝑎 ) } ) )
165 difun2 ( ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∖ { ( 𝑋𝑎 ) } ) = ( ran 𝑓 ∖ { ( 𝑋𝑎 ) } )
166 164 165 sseqtrdi ( 𝑠 ⊆ ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) → ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) ⊆ ( ran 𝑓 ∖ { ( 𝑋𝑎 ) } ) )
167 166 difss2d ( 𝑠 ⊆ ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) → ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) ⊆ ran 𝑓 )
168 163 167 sylbi ( 𝑠 ∈ 𝒫 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) → ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) ⊆ ran 𝑓 )
169 162 168 syl ( 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∩ Fin ) → ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) ⊆ ran 𝑓 )
170 169 a1i ( ( 𝐽 ∈ Top ∧ 𝑎𝑋 ) → ( 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∩ Fin ) → ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) ⊆ ran 𝑓 ) )
171 sseq2 ( 𝑋 = 𝑠 → ( 𝑎𝑋𝑎 𝑠 ) )
172 uniexg ( 𝐽 ∈ Top → 𝐽 ∈ V )
173 1 172 eqeltrid ( 𝐽 ∈ Top → 𝑋 ∈ V )
174 difexg ( 𝑋 ∈ V → ( 𝑋𝑎 ) ∈ V )
175 unisng ( ( 𝑋𝑎 ) ∈ V → { ( 𝑋𝑎 ) } = ( 𝑋𝑎 ) )
176 173 174 175 3syl ( 𝐽 ∈ Top → { ( 𝑋𝑎 ) } = ( 𝑋𝑎 ) )
177 176 ineq2d ( 𝐽 ∈ Top → ( 𝑎 { ( 𝑋𝑎 ) } ) = ( 𝑎 ∩ ( 𝑋𝑎 ) ) )
178 disjdif ( 𝑎 ∩ ( 𝑋𝑎 ) ) = ∅
179 177 178 eqtrdi ( 𝐽 ∈ Top → ( 𝑎 { ( 𝑋𝑎 ) } ) = ∅ )
180 inunissunidif ( ( 𝑎 { ( 𝑋𝑎 ) } ) = ∅ → ( 𝑎 𝑠𝑎 ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) ) )
181 179 180 syl ( 𝐽 ∈ Top → ( 𝑎 𝑠𝑎 ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) ) )
182 171 181 sylan9bbr ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑠 ) → ( 𝑎𝑋𝑎 ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) ) )
183 182 biimpd ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑠 ) → ( 𝑎𝑋𝑎 ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) ) )
184 183 impancom ( ( 𝐽 ∈ Top ∧ 𝑎𝑋 ) → ( 𝑋 = 𝑠𝑎 ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) ) )
185 170 184 anim12d ( ( 𝐽 ∈ Top ∧ 𝑎𝑋 ) → ( ( 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∩ Fin ) ∧ 𝑋 = 𝑠 ) → ( ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) ⊆ ran 𝑓𝑎 ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) ) ) )
186 5 29 185 syl2an ( ( 𝐽𝐶𝑎 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∩ Fin ) ∧ 𝑋 = 𝑠 ) → ( ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) ⊆ ran 𝑓𝑎 ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) ) ) )
187 186 adantrr ( ( 𝐽𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) → ( ( 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∩ Fin ) ∧ 𝑋 = 𝑠 ) → ( ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) ⊆ ran 𝑓𝑎 ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) ) ) )
188 187 anim2d ( ( 𝐽𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) → ( ( ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ∧ ( 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∩ Fin ) ∧ 𝑋 = 𝑠 ) ) → ( ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ∧ ( ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) ⊆ ran 𝑓𝑎 ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) ) ) ) )
189 118 ad2antrr ( ( ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ∧ ( ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) ⊆ ran 𝑓𝑎 ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) ) ) → 𝑎 ≈ ran 𝑓 )
190 fvineqsneq ( ( ( 𝑓 Fn 𝑎 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ∧ ( ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) ⊆ ran 𝑓𝑎 ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) ) ) → ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) = ran 𝑓 )
191 55 190 sylanl1 ( ( ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ∧ ( ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) ⊆ ran 𝑓𝑎 ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) ) ) → ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) = ran 𝑓 )
192 vex 𝑠 ∈ V
193 difss ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) ⊆ 𝑠
194 ssdomg ( 𝑠 ∈ V → ( ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) ⊆ 𝑠 → ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) ≼ 𝑠 ) )
195 192 193 194 mp2 ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) ≼ 𝑠
196 191 195 eqbrtrrdi ( ( ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ∧ ( ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) ⊆ ran 𝑓𝑎 ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) ) ) → ran 𝑓𝑠 )
197 endomtr ( ( 𝑎 ≈ ran 𝑓 ∧ ran 𝑓𝑠 ) → 𝑎𝑠 )
198 189 196 197 syl2anc ( ( ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ∧ ( ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) ⊆ ran 𝑓𝑎 ( 𝑠 ∖ { ( 𝑋𝑎 ) } ) ) ) → 𝑎𝑠 )
199 188 198 syl6 ( ( 𝐽𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) → ( ( ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ∧ ( 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∩ Fin ) ∧ 𝑋 = 𝑠 ) ) → 𝑎𝑠 ) )
200 199 expdimp ( ( ( 𝐽𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) ∧ ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → ( ( 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∩ Fin ) ∧ 𝑋 = 𝑠 ) → 𝑎𝑠 ) )
201 elinel2 ( 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∩ Fin ) → 𝑠 ∈ Fin )
202 201 adantr ( ( 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∩ Fin ) ∧ 𝑋 = 𝑠 ) → 𝑠 ∈ Fin )
203 202 a1i ( ( ( 𝐽𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) ∧ ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → ( ( 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∩ Fin ) ∧ 𝑋 = 𝑠 ) → 𝑠 ∈ Fin ) )
204 200 203 jcad ( ( ( 𝐽𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) ∧ ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → ( ( 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∩ Fin ) ∧ 𝑋 = 𝑠 ) → ( 𝑎𝑠𝑠 ∈ Fin ) ) )
205 204 eximdv ( ( ( 𝐽𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) ∧ ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → ( ∃ 𝑠 ( 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∩ Fin ) ∧ 𝑋 = 𝑠 ) → ∃ 𝑠 ( 𝑎𝑠𝑠 ∈ Fin ) ) )
206 161 205 biimtrid ( ( ( 𝐽𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) ∧ ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → ( ∃ 𝑠 ∈ ( 𝒫 ( ran 𝑓 ∪ { ( 𝑋𝑎 ) } ) ∩ Fin ) 𝑋 = 𝑠 → ∃ 𝑠 ( 𝑎𝑠𝑠 ∈ Fin ) ) )
207 160 206 mpd ( ( ( 𝐽𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) ∧ ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) ) → ∃ 𝑠 ( 𝑎𝑠𝑠 ∈ Fin ) )
208 207 ex ( ( 𝐽𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) → ( ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) → ∃ 𝑠 ( 𝑎𝑠𝑠 ∈ Fin ) ) )
209 208 exlimdv ( ( 𝐽𝐶 ∧ ( 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑎 ≈ ω ) ) → ( ∃ 𝑓 ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) → ∃ 𝑠 ( 𝑎𝑠𝑠 ∈ Fin ) ) )
210 209 anass1rs ( ( ( 𝐽𝐶𝑎 ≈ ω ) ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∃ 𝑓 ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) → ∃ 𝑠 ( 𝑎𝑠𝑠 ∈ Fin ) ) )
211 210 3adant3 ( ( ( 𝐽𝐶𝑎 ≈ ω ) ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) → ( ∃ 𝑓 ( 𝑓 : 𝑎1-1𝐽 ∧ ∀ 𝑝𝑎 ( ( 𝑓𝑝 ) ∩ 𝑎 ) = { 𝑝 } ) → ∃ 𝑠 ( 𝑎𝑠𝑠 ∈ Fin ) ) )
212 45 211 mpd ( ( ( 𝐽𝐶𝑎 ≈ ω ) ∧ 𝑎 ∈ ( Clsd ‘ 𝐽 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) → ∃ 𝑠 ( 𝑎𝑠𝑠 ∈ Fin ) )
213 18 27 28 212 syl3anc ( ( ( ( 𝐽𝐶𝑎 ≈ ω ) ∧ 𝑎𝑋 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) → ∃ 𝑠 ( 𝑎𝑠𝑠 ∈ Fin ) )
214 213 anasss ( ( ( 𝐽𝐶𝑎 ≈ ω ) ∧ ( 𝑎𝑋 ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) ) → ∃ 𝑠 ( 𝑎𝑠𝑠 ∈ Fin ) )
215 isfinite ( 𝑠 ∈ Fin ↔ 𝑠 ≺ ω )
216 domsdomtr ( ( 𝑎𝑠𝑠 ≺ ω ) → 𝑎 ≺ ω )
217 215 216 sylan2b ( ( 𝑎𝑠𝑠 ∈ Fin ) → 𝑎 ≺ ω )
218 217 exlimiv ( ∃ 𝑠 ( 𝑎𝑠𝑠 ∈ Fin ) → 𝑎 ≺ ω )
219 sdomnen ( 𝑎 ≺ ω → ¬ 𝑎 ≈ ω )
220 214 218 219 3syl ( ( ( 𝐽𝐶𝑎 ≈ ω ) ∧ ( 𝑎𝑋 ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) ) → ¬ 𝑎 ≈ ω )
221 17 220 pm2.65da ( ( 𝐽𝐶𝑎 ≈ ω ) → ¬ ( 𝑎𝑋 ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) )
222 imnan ( ( 𝑎𝑋 → ¬ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) ↔ ¬ ( 𝑎𝑋 ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) )
223 221 222 sylibr ( ( 𝐽𝐶𝑎 ≈ ω ) → ( 𝑎𝑋 → ¬ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ) )
224 223 imp ( ( ( 𝐽𝐶𝑎 ≈ ω ) ∧ 𝑎𝑋 ) → ¬ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ )
225 neq0 ( ¬ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) = ∅ ↔ ∃ 𝑠 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) )
226 224 225 sylib ( ( ( 𝐽𝐶𝑎 ≈ ω ) ∧ 𝑎𝑋 ) → ∃ 𝑠 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) )
227 1 lpss ( ( 𝐽 ∈ Top ∧ 𝑎𝑋 ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ⊆ 𝑋 )
228 5 227 sylan ( ( 𝐽𝐶𝑎𝑋 ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ⊆ 𝑋 )
229 228 adantlr ( ( ( 𝐽𝐶𝑎 ≈ ω ) ∧ 𝑎𝑋 ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ⊆ 𝑋 )
230 229 sseld ( ( ( 𝐽𝐶𝑎 ≈ ω ) ∧ 𝑎𝑋 ) → ( 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) → 𝑠𝑋 ) )
231 230 ancrd ( ( ( 𝐽𝐶𝑎 ≈ ω ) ∧ 𝑎𝑋 ) → ( 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) → ( 𝑠𝑋𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ) ) )
232 231 eximdv ( ( ( 𝐽𝐶𝑎 ≈ ω ) ∧ 𝑎𝑋 ) → ( ∃ 𝑠 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) → ∃ 𝑠 ( 𝑠𝑋𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ) ) )
233 df-rex ( ∃ 𝑠𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ↔ ∃ 𝑠 ( 𝑠𝑋𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ) )
234 232 233 imbitrrdi ( ( ( 𝐽𝐶𝑎 ≈ ω ) ∧ 𝑎𝑋 ) → ( ∃ 𝑠 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) → ∃ 𝑠𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ) )
235 226 234 mpd ( ( ( 𝐽𝐶𝑎 ≈ ω ) ∧ 𝑎𝑋 ) → ∃ 𝑠𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) )
236 16 235 sylan2 ( ( ( 𝐽𝐶𝑎 ≈ ω ) ∧ ( 𝑏𝑋𝑎𝑏 ) ) → ∃ 𝑠𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) )
237 1 lpss3 ( ( 𝐽 ∈ Top ∧ 𝑏𝑋𝑎𝑏 ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) )
238 237 3expb ( ( 𝐽 ∈ Top ∧ ( 𝑏𝑋𝑎𝑏 ) ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) )
239 5 238 sylan ( ( 𝐽𝐶 ∧ ( 𝑏𝑋𝑎𝑏 ) ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) )
240 239 adantlr ( ( ( 𝐽𝐶𝑎 ≈ ω ) ∧ ( 𝑏𝑋𝑎𝑏 ) ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) )
241 240 sseld ( ( ( 𝐽𝐶𝑎 ≈ ω ) ∧ ( 𝑏𝑋𝑎𝑏 ) ) → ( 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) → 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) )
242 241 reximdv ( ( ( 𝐽𝐶𝑎 ≈ ω ) ∧ ( 𝑏𝑋𝑎𝑏 ) ) → ( ∃ 𝑠𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) → ∃ 𝑠𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) )
243 236 242 mpd ( ( ( 𝐽𝐶𝑎 ≈ ω ) ∧ ( 𝑏𝑋𝑎𝑏 ) ) → ∃ 𝑠𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) )
244 243 an42s ( ( ( 𝐽𝐶𝑏𝑋 ) ∧ ( 𝑎𝑏𝑎 ≈ ω ) ) → ∃ 𝑠𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) )
245 244 ex ( ( 𝐽𝐶𝑏𝑋 ) → ( ( 𝑎𝑏𝑎 ≈ ω ) → ∃ 𝑠𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) )
246 245 exlimdv ( ( 𝐽𝐶𝑏𝑋 ) → ( ∃ 𝑎 ( 𝑎𝑏𝑎 ≈ ω ) → ∃ 𝑠𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) )
247 246 adantrr ( ( 𝐽𝐶 ∧ ( 𝑏𝑋 ∧ ¬ 𝑏 ∈ Fin ) ) → ( ∃ 𝑎 ( 𝑎𝑏𝑎 ≈ ω ) → ∃ 𝑠𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) )
248 14 247 mpd ( ( 𝐽𝐶 ∧ ( 𝑏𝑋 ∧ ¬ 𝑏 ∈ Fin ) ) → ∃ 𝑠𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) )
249 8 248 sylan2b ( ( 𝐽𝐶 ∧ ( 𝑏 ∈ 𝒫 𝑋 ∧ ¬ 𝑏 ∈ Fin ) ) → ∃ 𝑠𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) )
250 6 249 sylan2b ( ( 𝐽𝐶𝑏 ∈ ( 𝒫 𝑋 ∖ Fin ) ) → ∃ 𝑠𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) )
251 250 ralrimiva ( 𝐽𝐶 → ∀ 𝑏 ∈ ( 𝒫 𝑋 ∖ Fin ) ∃ 𝑠𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) )
252 simpr ( ( 𝑦 = 𝑏𝑧 = 𝑠 ) → 𝑧 = 𝑠 )
253 fveq2 ( 𝑦 = 𝑏 → ( ( limPt ‘ 𝐽 ) ‘ 𝑦 ) = ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) )
254 253 adantr ( ( 𝑦 = 𝑏𝑧 = 𝑠 ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑦 ) = ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) )
255 252 254 eleq12d ( ( 𝑦 = 𝑏𝑧 = 𝑠 ) → ( 𝑧 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑦 ) ↔ 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) )
256 255 cbvrexdva ( 𝑦 = 𝑏 → ( ∃ 𝑧𝑋 𝑧 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑦 ) ↔ ∃ 𝑠𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) )
257 256 cbvralvw ( ∀ 𝑦 ∈ ( 𝒫 𝑋 ∖ Fin ) ∃ 𝑧𝑋 𝑧 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑦 ) ↔ ∀ 𝑏 ∈ ( 𝒫 𝑋 ∖ Fin ) ∃ 𝑠𝑋 𝑠 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) )
258 251 257 sylibr ( 𝐽𝐶 → ∀ 𝑦 ∈ ( 𝒫 𝑋 ∖ Fin ) ∃ 𝑧𝑋 𝑧 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑦 ) )
259 1 3 pibp21 ( 𝐽𝑊 ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ ( 𝒫 𝑋 ∖ Fin ) ∃ 𝑧𝑋 𝑧 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑦 ) ) )
260 5 258 259 sylanbrc ( 𝐽𝐶𝐽𝑊 )