| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pibt2.x | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | pibt2.19 | ⊢ 𝐶  =  { 𝑥  ∈  Top  ∣  ∀ 𝑦  ∈  𝒫  𝑥 ( ( ∪  𝑥  =  ∪  𝑦  ∧  𝑦  ≼  ω )  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) ∪  𝑥  =  ∪  𝑧 ) } | 
						
							| 3 |  | pibt2.21 | ⊢ 𝑊  =  { 𝑥  ∈  Top  ∣  ∀ 𝑦  ∈  ( 𝒫  ∪  𝑥  ∖  Fin ) ∃ 𝑧  ∈  ∪  𝑥 𝑧  ∈  ( ( limPt ‘ 𝑥 ) ‘ 𝑦 ) } | 
						
							| 4 | 1 2 | pibp19 | ⊢ ( 𝐽  ∈  𝐶  ↔  ( 𝐽  ∈  Top  ∧  ∀ 𝑦  ∈  𝒫  𝐽 ( ( 𝑋  =  ∪  𝑦  ∧  𝑦  ≼  ω )  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑧 ) ) ) | 
						
							| 5 | 4 | simplbi | ⊢ ( 𝐽  ∈  𝐶  →  𝐽  ∈  Top ) | 
						
							| 6 |  | eldif | ⊢ ( 𝑏  ∈  ( 𝒫  𝑋  ∖  Fin )  ↔  ( 𝑏  ∈  𝒫  𝑋  ∧  ¬  𝑏  ∈  Fin ) ) | 
						
							| 7 |  | velpw | ⊢ ( 𝑏  ∈  𝒫  𝑋  ↔  𝑏  ⊆  𝑋 ) | 
						
							| 8 | 7 | anbi1i | ⊢ ( ( 𝑏  ∈  𝒫  𝑋  ∧  ¬  𝑏  ∈  Fin )  ↔  ( 𝑏  ⊆  𝑋  ∧  ¬  𝑏  ∈  Fin ) ) | 
						
							| 9 |  | vex | ⊢ 𝑏  ∈  V | 
						
							| 10 |  | infinf | ⊢ ( 𝑏  ∈  V  →  ( ¬  𝑏  ∈  Fin  ↔  ω  ≼  𝑏 ) ) | 
						
							| 11 | 9 10 | ax-mp | ⊢ ( ¬  𝑏  ∈  Fin  ↔  ω  ≼  𝑏 ) | 
						
							| 12 | 9 | infcntss | ⊢ ( ω  ≼  𝑏  →  ∃ 𝑎 ( 𝑎  ⊆  𝑏  ∧  𝑎  ≈  ω ) ) | 
						
							| 13 | 11 12 | sylbi | ⊢ ( ¬  𝑏  ∈  Fin  →  ∃ 𝑎 ( 𝑎  ⊆  𝑏  ∧  𝑎  ≈  ω ) ) | 
						
							| 14 | 13 | ad2antll | ⊢ ( ( 𝐽  ∈  𝐶  ∧  ( 𝑏  ⊆  𝑋  ∧  ¬  𝑏  ∈  Fin ) )  →  ∃ 𝑎 ( 𝑎  ⊆  𝑏  ∧  𝑎  ≈  ω ) ) | 
						
							| 15 |  | sstr | ⊢ ( ( 𝑎  ⊆  𝑏  ∧  𝑏  ⊆  𝑋 )  →  𝑎  ⊆  𝑋 ) | 
						
							| 16 | 15 | ancoms | ⊢ ( ( 𝑏  ⊆  𝑋  ∧  𝑎  ⊆  𝑏 )  →  𝑎  ⊆  𝑋 ) | 
						
							| 17 |  | simplr | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  𝑎  ≈  ω )  ∧  ( 𝑎  ⊆  𝑋  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  =  ∅ ) )  →  𝑎  ≈  ω ) | 
						
							| 18 |  | simpll | ⊢ ( ( ( ( 𝐽  ∈  𝐶  ∧  𝑎  ≈  ω )  ∧  𝑎  ⊆  𝑋 )  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  =  ∅ )  →  ( 𝐽  ∈  𝐶  ∧  𝑎  ≈  ω ) ) | 
						
							| 19 |  | 0ss | ⊢ ∅  ⊆  𝑎 | 
						
							| 20 |  | sseq1 | ⊢ ( ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  =  ∅  →  ( ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  ⊆  𝑎  ↔  ∅  ⊆  𝑎 ) ) | 
						
							| 21 | 19 20 | mpbiri | ⊢ ( ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  =  ∅  →  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  ⊆  𝑎 ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑎  ⊆  𝑋 )  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  =  ∅ )  →  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  ⊆  𝑎 ) | 
						
							| 23 | 1 | cldlp | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑎  ⊆  𝑋 )  →  ( 𝑎  ∈  ( Clsd ‘ 𝐽 )  ↔  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  ⊆  𝑎 ) ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑎  ⊆  𝑋 )  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  =  ∅ )  →  ( 𝑎  ∈  ( Clsd ‘ 𝐽 )  ↔  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  ⊆  𝑎 ) ) | 
						
							| 25 | 22 24 | mpbird | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑎  ⊆  𝑋 )  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  =  ∅ )  →  𝑎  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 26 | 5 25 | sylanl1 | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  𝑎  ⊆  𝑋 )  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  =  ∅ )  →  𝑎  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 27 | 26 | adantllr | ⊢ ( ( ( ( 𝐽  ∈  𝐶  ∧  𝑎  ≈  ω )  ∧  𝑎  ⊆  𝑋 )  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  =  ∅ )  →  𝑎  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 28 |  | simpr | ⊢ ( ( ( ( 𝐽  ∈  𝐶  ∧  𝑎  ≈  ω )  ∧  𝑎  ⊆  𝑋 )  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  =  ∅ )  →  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  =  ∅ ) | 
						
							| 29 | 1 | cldss | ⊢ ( 𝑎  ∈  ( Clsd ‘ 𝐽 )  →  𝑎  ⊆  𝑋 ) | 
						
							| 30 | 1 | nlpineqsn | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑎  ⊆  𝑋  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  =  ∅ )  →  ∀ 𝑝  ∈  𝑎 ∃ 𝑛  ∈  𝐽 ( 𝑝  ∈  𝑛  ∧  ( 𝑛  ∩  𝑎 )  =  { 𝑝 } ) ) | 
						
							| 31 |  | simpr | ⊢ ( ( 𝑝  ∈  𝑛  ∧  ( 𝑛  ∩  𝑎 )  =  { 𝑝 } )  →  ( 𝑛  ∩  𝑎 )  =  { 𝑝 } ) | 
						
							| 32 | 31 | reximi | ⊢ ( ∃ 𝑛  ∈  𝐽 ( 𝑝  ∈  𝑛  ∧  ( 𝑛  ∩  𝑎 )  =  { 𝑝 } )  →  ∃ 𝑛  ∈  𝐽 ( 𝑛  ∩  𝑎 )  =  { 𝑝 } ) | 
						
							| 33 | 32 | ralimi | ⊢ ( ∀ 𝑝  ∈  𝑎 ∃ 𝑛  ∈  𝐽 ( 𝑝  ∈  𝑛  ∧  ( 𝑛  ∩  𝑎 )  =  { 𝑝 } )  →  ∀ 𝑝  ∈  𝑎 ∃ 𝑛  ∈  𝐽 ( 𝑛  ∩  𝑎 )  =  { 𝑝 } ) | 
						
							| 34 |  | vex | ⊢ 𝑎  ∈  V | 
						
							| 35 |  | ineq1 | ⊢ ( 𝑛  =  ( 𝑓 ‘ 𝑝 )  →  ( 𝑛  ∩  𝑎 )  =  ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 ) ) | 
						
							| 36 | 35 | eqeq1d | ⊢ ( 𝑛  =  ( 𝑓 ‘ 𝑝 )  →  ( ( 𝑛  ∩  𝑎 )  =  { 𝑝 }  ↔  ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } ) ) | 
						
							| 37 | 34 36 | ac6s | ⊢ ( ∀ 𝑝  ∈  𝑎 ∃ 𝑛  ∈  𝐽 ( 𝑛  ∩  𝑎 )  =  { 𝑝 }  →  ∃ 𝑓 ( 𝑓 : 𝑎 ⟶ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } ) ) | 
						
							| 38 |  | fvineqsnf1 | ⊢ ( ( 𝑓 : 𝑎 ⟶ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } )  →  𝑓 : 𝑎 –1-1→ 𝐽 ) | 
						
							| 39 |  | simpr | ⊢ ( ( 𝑓 : 𝑎 ⟶ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } )  →  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } ) | 
						
							| 40 | 38 39 | jca | ⊢ ( ( 𝑓 : 𝑎 ⟶ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } )  →  ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } ) ) | 
						
							| 41 | 40 | eximi | ⊢ ( ∃ 𝑓 ( 𝑓 : 𝑎 ⟶ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } )  →  ∃ 𝑓 ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } ) ) | 
						
							| 42 | 30 33 37 41 | 4syl | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑎  ⊆  𝑋  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  =  ∅ )  →  ∃ 𝑓 ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } ) ) | 
						
							| 43 | 29 42 | syl3an2 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑎  ∈  ( Clsd ‘ 𝐽 )  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  =  ∅ )  →  ∃ 𝑓 ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } ) ) | 
						
							| 44 | 5 43 | syl3an1 | ⊢ ( ( 𝐽  ∈  𝐶  ∧  𝑎  ∈  ( Clsd ‘ 𝐽 )  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  =  ∅ )  →  ∃ 𝑓 ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } ) ) | 
						
							| 45 | 44 | 3adant1r | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  𝑎  ≈  ω )  ∧  𝑎  ∈  ( Clsd ‘ 𝐽 )  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  =  ∅ )  →  ∃ 𝑓 ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } ) ) | 
						
							| 46 |  | simpr | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑎  ∈  ( Clsd ‘ 𝐽 ) )  ∧  𝑓 : 𝑎 –1-1→ 𝐽 )  →  𝑓 : 𝑎 –1-1→ 𝐽 ) | 
						
							| 47 |  | vsnid | ⊢ 𝑝  ∈  { 𝑝 } | 
						
							| 48 |  | eleq2 | ⊢ ( ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 }  →  ( 𝑝  ∈  ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  ↔  𝑝  ∈  { 𝑝 } ) ) | 
						
							| 49 | 47 48 | mpbiri | ⊢ ( ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 }  →  𝑝  ∈  ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 ) ) | 
						
							| 50 | 49 | elin1d | ⊢ ( ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 }  →  𝑝  ∈  ( 𝑓 ‘ 𝑝 ) ) | 
						
							| 51 | 50 | ralimi | ⊢ ( ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 }  →  ∀ 𝑝  ∈  𝑎 𝑝  ∈  ( 𝑓 ‘ 𝑝 ) ) | 
						
							| 52 |  | ralssiun | ⊢ ( ∀ 𝑝  ∈  𝑎 𝑝  ∈  ( 𝑓 ‘ 𝑝 )  →  𝑎  ⊆  ∪  𝑝  ∈  𝑎 ( 𝑓 ‘ 𝑝 ) ) | 
						
							| 53 | 51 52 | syl | ⊢ ( ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 }  →  𝑎  ⊆  ∪  𝑝  ∈  𝑎 ( 𝑓 ‘ 𝑝 ) ) | 
						
							| 54 | 53 | adantl | ⊢ ( ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } )  →  𝑎  ⊆  ∪  𝑝  ∈  𝑎 ( 𝑓 ‘ 𝑝 ) ) | 
						
							| 55 |  | f1fn | ⊢ ( 𝑓 : 𝑎 –1-1→ 𝐽  →  𝑓  Fn  𝑎 ) | 
						
							| 56 |  | fniunfv | ⊢ ( 𝑓  Fn  𝑎  →  ∪  𝑝  ∈  𝑎 ( 𝑓 ‘ 𝑝 )  =  ∪  ran  𝑓 ) | 
						
							| 57 | 55 56 | syl | ⊢ ( 𝑓 : 𝑎 –1-1→ 𝐽  →  ∪  𝑝  ∈  𝑎 ( 𝑓 ‘ 𝑝 )  =  ∪  ran  𝑓 ) | 
						
							| 58 | 57 | adantr | ⊢ ( ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } )  →  ∪  𝑝  ∈  𝑎 ( 𝑓 ‘ 𝑝 )  =  ∪  ran  𝑓 ) | 
						
							| 59 | 54 58 | sseqtrd | ⊢ ( ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } )  →  𝑎  ⊆  ∪  ran  𝑓 ) | 
						
							| 60 | 1 | cldopn | ⊢ ( 𝑎  ∈  ( Clsd ‘ 𝐽 )  →  ( 𝑋  ∖  𝑎 )  ∈  𝐽 ) | 
						
							| 61 | 60 | ad2antll | ⊢ ( ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ( 𝐽  ∈  Top  ∧  𝑎  ∈  ( Clsd ‘ 𝐽 ) ) )  →  ( 𝑋  ∖  𝑎 )  ∈  𝐽 ) | 
						
							| 62 | 61 | anim1i | ⊢ ( ( ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ( 𝐽  ∈  Top  ∧  𝑎  ∈  ( Clsd ‘ 𝐽 ) ) )  ∧  𝑎  ⊆  ∪  ran  𝑓 )  →  ( ( 𝑋  ∖  𝑎 )  ∈  𝐽  ∧  𝑎  ⊆  ∪  ran  𝑓 ) ) | 
						
							| 63 | 62 | ancomd | ⊢ ( ( ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ( 𝐽  ∈  Top  ∧  𝑎  ∈  ( Clsd ‘ 𝐽 ) ) )  ∧  𝑎  ⊆  ∪  ran  𝑓 )  →  ( 𝑎  ⊆  ∪  ran  𝑓  ∧  ( 𝑋  ∖  𝑎 )  ∈  𝐽 ) ) | 
						
							| 64 | 29 | ad2antll | ⊢ ( ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ( 𝐽  ∈  Top  ∧  𝑎  ∈  ( Clsd ‘ 𝐽 ) ) )  →  𝑎  ⊆  𝑋 ) | 
						
							| 65 | 64 | anim1i | ⊢ ( ( ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ( 𝐽  ∈  Top  ∧  𝑎  ∈  ( Clsd ‘ 𝐽 ) ) )  ∧  ( 𝑎  ⊆  ∪  ran  𝑓  ∧  ( 𝑋  ∖  𝑎 )  ∈  𝐽 ) )  →  ( 𝑎  ⊆  𝑋  ∧  ( 𝑎  ⊆  ∪  ran  𝑓  ∧  ( 𝑋  ∖  𝑎 )  ∈  𝐽 ) ) ) | 
						
							| 66 |  | unisng | ⊢ ( ( 𝑋  ∖  𝑎 )  ∈  𝐽  →  ∪  { ( 𝑋  ∖  𝑎 ) }  =  ( 𝑋  ∖  𝑎 ) ) | 
						
							| 67 | 66 | eqcomd | ⊢ ( ( 𝑋  ∖  𝑎 )  ∈  𝐽  →  ( 𝑋  ∖  𝑎 )  =  ∪  { ( 𝑋  ∖  𝑎 ) } ) | 
						
							| 68 |  | eqimss | ⊢ ( ( 𝑋  ∖  𝑎 )  =  ∪  { ( 𝑋  ∖  𝑎 ) }  →  ( 𝑋  ∖  𝑎 )  ⊆  ∪  { ( 𝑋  ∖  𝑎 ) } ) | 
						
							| 69 |  | ssun4 | ⊢ ( ( 𝑋  ∖  𝑎 )  ⊆  ∪  { ( 𝑋  ∖  𝑎 ) }  →  ( 𝑋  ∖  𝑎 )  ⊆  ( ∪  ran  𝑓  ∪  ∪  { ( 𝑋  ∖  𝑎 ) } ) ) | 
						
							| 70 |  | uniun | ⊢ ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  =  ( ∪  ran  𝑓  ∪  ∪  { ( 𝑋  ∖  𝑎 ) } ) | 
						
							| 71 | 69 70 | sseqtrrdi | ⊢ ( ( 𝑋  ∖  𝑎 )  ⊆  ∪  { ( 𝑋  ∖  𝑎 ) }  →  ( 𝑋  ∖  𝑎 )  ⊆  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } ) ) | 
						
							| 72 | 67 68 71 | 3syl | ⊢ ( ( 𝑋  ∖  𝑎 )  ∈  𝐽  →  ( 𝑋  ∖  𝑎 )  ⊆  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } ) ) | 
						
							| 73 |  | ssun3 | ⊢ ( 𝑎  ⊆  ∪  ran  𝑓  →  𝑎  ⊆  ( ∪  ran  𝑓  ∪  ∪  { ( 𝑋  ∖  𝑎 ) } ) ) | 
						
							| 74 | 73 70 | sseqtrrdi | ⊢ ( 𝑎  ⊆  ∪  ran  𝑓  →  𝑎  ⊆  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } ) ) | 
						
							| 75 |  | uncom | ⊢ ( 𝑎  ∪  ( 𝑋  ∖  𝑎 ) )  =  ( ( 𝑋  ∖  𝑎 )  ∪  𝑎 ) | 
						
							| 76 |  | undif1 | ⊢ ( ( 𝑋  ∖  𝑎 )  ∪  𝑎 )  =  ( 𝑋  ∪  𝑎 ) | 
						
							| 77 | 75 76 | eqtri | ⊢ ( 𝑎  ∪  ( 𝑋  ∖  𝑎 ) )  =  ( 𝑋  ∪  𝑎 ) | 
						
							| 78 |  | ssequn2 | ⊢ ( 𝑎  ⊆  𝑋  ↔  ( 𝑋  ∪  𝑎 )  =  𝑋 ) | 
						
							| 79 | 78 | biimpi | ⊢ ( 𝑎  ⊆  𝑋  →  ( 𝑋  ∪  𝑎 )  =  𝑋 ) | 
						
							| 80 | 77 79 | eqtrid | ⊢ ( 𝑎  ⊆  𝑋  →  ( 𝑎  ∪  ( 𝑋  ∖  𝑎 ) )  =  𝑋 ) | 
						
							| 81 | 80 | adantr | ⊢ ( ( 𝑎  ⊆  𝑋  ∧  ( 𝑎  ⊆  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∧  ( 𝑋  ∖  𝑎 )  ⊆  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } ) ) )  →  ( 𝑎  ∪  ( 𝑋  ∖  𝑎 ) )  =  𝑋 ) | 
						
							| 82 |  | unss12 | ⊢ ( ( 𝑎  ⊆  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∧  ( 𝑋  ∖  𝑎 )  ⊆  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } ) )  →  ( 𝑎  ∪  ( 𝑋  ∖  𝑎 ) )  ⊆  ( ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∪  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } ) ) ) | 
						
							| 83 |  | unidm | ⊢ ( ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∪  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } ) )  =  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } ) | 
						
							| 84 | 82 83 | sseqtrdi | ⊢ ( ( 𝑎  ⊆  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∧  ( 𝑋  ∖  𝑎 )  ⊆  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } ) )  →  ( 𝑎  ∪  ( 𝑋  ∖  𝑎 ) )  ⊆  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } ) ) | 
						
							| 85 | 84 | adantl | ⊢ ( ( 𝑎  ⊆  𝑋  ∧  ( 𝑎  ⊆  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∧  ( 𝑋  ∖  𝑎 )  ⊆  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } ) ) )  →  ( 𝑎  ∪  ( 𝑋  ∖  𝑎 ) )  ⊆  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } ) ) | 
						
							| 86 | 81 85 | eqsstrrd | ⊢ ( ( 𝑎  ⊆  𝑋  ∧  ( 𝑎  ⊆  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∧  ( 𝑋  ∖  𝑎 )  ⊆  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } ) ) )  →  𝑋  ⊆  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } ) ) | 
						
							| 87 | 74 86 | sylanr1 | ⊢ ( ( 𝑎  ⊆  𝑋  ∧  ( 𝑎  ⊆  ∪  ran  𝑓  ∧  ( 𝑋  ∖  𝑎 )  ⊆  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } ) ) )  →  𝑋  ⊆  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } ) ) | 
						
							| 88 | 72 87 | sylanr2 | ⊢ ( ( 𝑎  ⊆  𝑋  ∧  ( 𝑎  ⊆  ∪  ran  𝑓  ∧  ( 𝑋  ∖  𝑎 )  ∈  𝐽 ) )  →  𝑋  ⊆  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } ) ) | 
						
							| 89 | 88 | adantl | ⊢ ( ( ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ( 𝐽  ∈  Top  ∧  𝑎  ∈  ( Clsd ‘ 𝐽 ) ) )  ∧  ( 𝑎  ⊆  𝑋  ∧  ( 𝑎  ⊆  ∪  ran  𝑓  ∧  ( 𝑋  ∖  𝑎 )  ∈  𝐽 ) ) )  →  𝑋  ⊆  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } ) ) | 
						
							| 90 |  | f1f | ⊢ ( 𝑓 : 𝑎 –1-1→ 𝐽  →  𝑓 : 𝑎 ⟶ 𝐽 ) | 
						
							| 91 |  | frn | ⊢ ( 𝑓 : 𝑎 ⟶ 𝐽  →  ran  𝑓  ⊆  𝐽 ) | 
						
							| 92 | 90 91 | syl | ⊢ ( 𝑓 : 𝑎 –1-1→ 𝐽  →  ran  𝑓  ⊆  𝐽 ) | 
						
							| 93 | 1 | topopn | ⊢ ( 𝐽  ∈  Top  →  𝑋  ∈  𝐽 ) | 
						
							| 94 | 1 | difopn | ⊢ ( ( 𝑋  ∈  𝐽  ∧  𝑎  ∈  ( Clsd ‘ 𝐽 ) )  →  ( 𝑋  ∖  𝑎 )  ∈  𝐽 ) | 
						
							| 95 | 93 94 | sylan | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑎  ∈  ( Clsd ‘ 𝐽 ) )  →  ( 𝑋  ∖  𝑎 )  ∈  𝐽 ) | 
						
							| 96 | 95 | snssd | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑎  ∈  ( Clsd ‘ 𝐽 ) )  →  { ( 𝑋  ∖  𝑎 ) }  ⊆  𝐽 ) | 
						
							| 97 |  | unss12 | ⊢ ( ( ran  𝑓  ⊆  𝐽  ∧  { ( 𝑋  ∖  𝑎 ) }  ⊆  𝐽 )  →  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ⊆  ( 𝐽  ∪  𝐽 ) ) | 
						
							| 98 |  | unidm | ⊢ ( 𝐽  ∪  𝐽 )  =  𝐽 | 
						
							| 99 | 97 98 | sseqtrdi | ⊢ ( ( ran  𝑓  ⊆  𝐽  ∧  { ( 𝑋  ∖  𝑎 ) }  ⊆  𝐽 )  →  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ⊆  𝐽 ) | 
						
							| 100 | 92 96 99 | syl2an | ⊢ ( ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ( 𝐽  ∈  Top  ∧  𝑎  ∈  ( Clsd ‘ 𝐽 ) ) )  →  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ⊆  𝐽 ) | 
						
							| 101 |  | uniss | ⊢ ( ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ⊆  𝐽  →  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ⊆  ∪  𝐽 ) | 
						
							| 102 | 101 1 | sseqtrrdi | ⊢ ( ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ⊆  𝐽  →  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ⊆  𝑋 ) | 
						
							| 103 | 100 102 | syl | ⊢ ( ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ( 𝐽  ∈  Top  ∧  𝑎  ∈  ( Clsd ‘ 𝐽 ) ) )  →  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ⊆  𝑋 ) | 
						
							| 104 | 103 | adantr | ⊢ ( ( ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ( 𝐽  ∈  Top  ∧  𝑎  ∈  ( Clsd ‘ 𝐽 ) ) )  ∧  ( 𝑎  ⊆  𝑋  ∧  ( 𝑎  ⊆  ∪  ran  𝑓  ∧  ( 𝑋  ∖  𝑎 )  ∈  𝐽 ) ) )  →  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ⊆  𝑋 ) | 
						
							| 105 | 89 104 | eqssd | ⊢ ( ( ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ( 𝐽  ∈  Top  ∧  𝑎  ∈  ( Clsd ‘ 𝐽 ) ) )  ∧  ( 𝑎  ⊆  𝑋  ∧  ( 𝑎  ⊆  ∪  ran  𝑓  ∧  ( 𝑋  ∖  𝑎 )  ∈  𝐽 ) ) )  →  𝑋  =  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } ) ) | 
						
							| 106 | 65 105 | syldan | ⊢ ( ( ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ( 𝐽  ∈  Top  ∧  𝑎  ∈  ( Clsd ‘ 𝐽 ) ) )  ∧  ( 𝑎  ⊆  ∪  ran  𝑓  ∧  ( 𝑋  ∖  𝑎 )  ∈  𝐽 ) )  →  𝑋  =  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } ) ) | 
						
							| 107 | 63 106 | syldan | ⊢ ( ( ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ( 𝐽  ∈  Top  ∧  𝑎  ∈  ( Clsd ‘ 𝐽 ) ) )  ∧  𝑎  ⊆  ∪  ran  𝑓 )  →  𝑋  =  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } ) ) | 
						
							| 108 | 59 107 | sylan2 | ⊢ ( ( ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ( 𝐽  ∈  Top  ∧  𝑎  ∈  ( Clsd ‘ 𝐽 ) ) )  ∧  ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } ) )  →  𝑋  =  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } ) ) | 
						
							| 109 | 108 | ancom1s | ⊢ ( ( ( ( 𝐽  ∈  Top  ∧  𝑎  ∈  ( Clsd ‘ 𝐽 ) )  ∧  𝑓 : 𝑎 –1-1→ 𝐽 )  ∧  ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } ) )  →  𝑋  =  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } ) ) | 
						
							| 110 | 109 | ex | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑎  ∈  ( Clsd ‘ 𝐽 ) )  ∧  𝑓 : 𝑎 –1-1→ 𝐽 )  →  ( ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } )  →  𝑋  =  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } ) ) ) | 
						
							| 111 | 46 110 | mpand | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑎  ∈  ( Clsd ‘ 𝐽 ) )  ∧  𝑓 : 𝑎 –1-1→ 𝐽 )  →  ( ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 }  →  𝑋  =  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } ) ) ) | 
						
							| 112 | 111 | impr | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑎  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } ) )  →  𝑋  =  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } ) ) | 
						
							| 113 | 112 | adantlrr | ⊢ ( ( ( 𝐽  ∈  Top  ∧  ( 𝑎  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑎  ≈  ω ) )  ∧  ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } ) )  →  𝑋  =  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } ) ) | 
						
							| 114 | 5 113 | sylanl1 | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  ( 𝑎  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑎  ≈  ω ) )  ∧  ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } ) )  →  𝑋  =  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } ) ) | 
						
							| 115 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 116 |  | f1f1orn | ⊢ ( 𝑓 : 𝑎 –1-1→ 𝐽  →  𝑓 : 𝑎 –1-1-onto→ ran  𝑓 ) | 
						
							| 117 |  | f1oen3g | ⊢ ( ( 𝑓  ∈  V  ∧  𝑓 : 𝑎 –1-1-onto→ ran  𝑓 )  →  𝑎  ≈  ran  𝑓 ) | 
						
							| 118 | 115 116 117 | sylancr | ⊢ ( 𝑓 : 𝑎 –1-1→ 𝐽  →  𝑎  ≈  ran  𝑓 ) | 
						
							| 119 |  | enen1 | ⊢ ( 𝑎  ≈  ran  𝑓  →  ( 𝑎  ≈  ω  ↔  ran  𝑓  ≈  ω ) ) | 
						
							| 120 |  | endom | ⊢ ( ran  𝑓  ≈  ω  →  ran  𝑓  ≼  ω ) | 
						
							| 121 |  | snfi | ⊢ { ( 𝑋  ∖  𝑎 ) }  ∈  Fin | 
						
							| 122 |  | isfinite | ⊢ ( { ( 𝑋  ∖  𝑎 ) }  ∈  Fin  ↔  { ( 𝑋  ∖  𝑎 ) }  ≺  ω ) | 
						
							| 123 | 121 122 | mpbi | ⊢ { ( 𝑋  ∖  𝑎 ) }  ≺  ω | 
						
							| 124 |  | sdomdom | ⊢ ( { ( 𝑋  ∖  𝑎 ) }  ≺  ω  →  { ( 𝑋  ∖  𝑎 ) }  ≼  ω ) | 
						
							| 125 | 123 124 | ax-mp | ⊢ { ( 𝑋  ∖  𝑎 ) }  ≼  ω | 
						
							| 126 |  | unctb | ⊢ ( ( ran  𝑓  ≼  ω  ∧  { ( 𝑋  ∖  𝑎 ) }  ≼  ω )  →  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ≼  ω ) | 
						
							| 127 | 120 125 126 | sylancl | ⊢ ( ran  𝑓  ≈  ω  →  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ≼  ω ) | 
						
							| 128 | 119 127 | biimtrdi | ⊢ ( 𝑎  ≈  ran  𝑓  →  ( 𝑎  ≈  ω  →  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ≼  ω ) ) | 
						
							| 129 | 118 128 | syl | ⊢ ( 𝑓 : 𝑎 –1-1→ 𝐽  →  ( 𝑎  ≈  ω  →  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ≼  ω ) ) | 
						
							| 130 | 129 | impcom | ⊢ ( ( 𝑎  ≈  ω  ∧  𝑓 : 𝑎 –1-1→ 𝐽 )  →  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ≼  ω ) | 
						
							| 131 | 130 | adantll | ⊢ ( ( ( 𝑎  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑎  ≈  ω )  ∧  𝑓 : 𝑎 –1-1→ 𝐽 )  →  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ≼  ω ) | 
						
							| 132 | 131 | ad2ant2lr | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  ( 𝑎  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑎  ≈  ω ) )  ∧  ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } ) )  →  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ≼  ω ) | 
						
							| 133 | 100 | ancoms | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑎  ∈  ( Clsd ‘ 𝐽 ) )  ∧  𝑓 : 𝑎 –1-1→ 𝐽 )  →  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ⊆  𝐽 ) | 
						
							| 134 | 133 | adantrr | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑎  ∈  ( Clsd ‘ 𝐽 ) )  ∧  ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } ) )  →  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ⊆  𝐽 ) | 
						
							| 135 | 134 | adantlrr | ⊢ ( ( ( 𝐽  ∈  Top  ∧  ( 𝑎  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑎  ≈  ω ) )  ∧  ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } ) )  →  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ⊆  𝐽 ) | 
						
							| 136 | 5 135 | sylanl1 | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  ( 𝑎  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑎  ≈  ω ) )  ∧  ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } ) )  →  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ⊆  𝐽 ) | 
						
							| 137 |  | elpw2g | ⊢ ( 𝐽  ∈  𝐶  →  ( ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∈  𝒫  𝐽  ↔  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ⊆  𝐽 ) ) | 
						
							| 138 | 137 | biimprd | ⊢ ( 𝐽  ∈  𝐶  →  ( ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ⊆  𝐽  →  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∈  𝒫  𝐽 ) ) | 
						
							| 139 | 138 | ad2antrr | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  ( 𝑎  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑎  ≈  ω ) )  ∧  ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } ) )  →  ( ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ⊆  𝐽  →  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∈  𝒫  𝐽 ) ) | 
						
							| 140 | 136 139 | mpd | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  ( 𝑎  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑎  ≈  ω ) )  ∧  ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } ) )  →  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∈  𝒫  𝐽 ) | 
						
							| 141 | 4 | simprbi | ⊢ ( 𝐽  ∈  𝐶  →  ∀ 𝑦  ∈  𝒫  𝐽 ( ( 𝑋  =  ∪  𝑦  ∧  𝑦  ≼  ω )  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑧 ) ) | 
						
							| 142 |  | unieq | ⊢ ( 𝑠  =  𝑧  →  ∪  𝑠  =  ∪  𝑧 ) | 
						
							| 143 | 142 | eqeq2d | ⊢ ( 𝑠  =  𝑧  →  ( 𝑋  =  ∪  𝑠  ↔  𝑋  =  ∪  𝑧 ) ) | 
						
							| 144 | 143 | cbvrexvw | ⊢ ( ∃ 𝑠  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑠  ↔  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑧 ) | 
						
							| 145 | 144 | imbi2i | ⊢ ( ( ( 𝑋  =  ∪  𝑦  ∧  𝑦  ≼  ω )  →  ∃ 𝑠  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑠 )  ↔  ( ( 𝑋  =  ∪  𝑦  ∧  𝑦  ≼  ω )  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑧 ) ) | 
						
							| 146 | 145 | ralbii | ⊢ ( ∀ 𝑦  ∈  𝒫  𝐽 ( ( 𝑋  =  ∪  𝑦  ∧  𝑦  ≼  ω )  →  ∃ 𝑠  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑠 )  ↔  ∀ 𝑦  ∈  𝒫  𝐽 ( ( 𝑋  =  ∪  𝑦  ∧  𝑦  ≼  ω )  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑧 ) ) | 
						
							| 147 | 141 146 | sylibr | ⊢ ( 𝐽  ∈  𝐶  →  ∀ 𝑦  ∈  𝒫  𝐽 ( ( 𝑋  =  ∪  𝑦  ∧  𝑦  ≼  ω )  →  ∃ 𝑠  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑠 ) ) | 
						
							| 148 |  | unieq | ⊢ ( 𝑦  =  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  →  ∪  𝑦  =  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } ) ) | 
						
							| 149 | 148 | eqeq2d | ⊢ ( 𝑦  =  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  →  ( 𝑋  =  ∪  𝑦  ↔  𝑋  =  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } ) ) ) | 
						
							| 150 |  | breq1 | ⊢ ( 𝑦  =  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  →  ( 𝑦  ≼  ω  ↔  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ≼  ω ) ) | 
						
							| 151 | 149 150 | anbi12d | ⊢ ( 𝑦  =  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  →  ( ( 𝑋  =  ∪  𝑦  ∧  𝑦  ≼  ω )  ↔  ( 𝑋  =  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∧  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ≼  ω ) ) ) | 
						
							| 152 |  | pweq | ⊢ ( 𝑦  =  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  →  𝒫  𝑦  =  𝒫  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } ) ) | 
						
							| 153 | 152 | ineq1d | ⊢ ( 𝑦  =  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  →  ( 𝒫  𝑦  ∩  Fin )  =  ( 𝒫  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∩  Fin ) ) | 
						
							| 154 | 153 | rexeqdv | ⊢ ( 𝑦  =  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  →  ( ∃ 𝑠  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑠  ↔  ∃ 𝑠  ∈  ( 𝒫  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∩  Fin ) 𝑋  =  ∪  𝑠 ) ) | 
						
							| 155 | 151 154 | imbi12d | ⊢ ( 𝑦  =  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  →  ( ( ( 𝑋  =  ∪  𝑦  ∧  𝑦  ≼  ω )  →  ∃ 𝑠  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑠 )  ↔  ( ( 𝑋  =  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∧  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ≼  ω )  →  ∃ 𝑠  ∈  ( 𝒫  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∩  Fin ) 𝑋  =  ∪  𝑠 ) ) ) | 
						
							| 156 | 155 | rspccv | ⊢ ( ∀ 𝑦  ∈  𝒫  𝐽 ( ( 𝑋  =  ∪  𝑦  ∧  𝑦  ≼  ω )  →  ∃ 𝑠  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑠 )  →  ( ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∈  𝒫  𝐽  →  ( ( 𝑋  =  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∧  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ≼  ω )  →  ∃ 𝑠  ∈  ( 𝒫  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∩  Fin ) 𝑋  =  ∪  𝑠 ) ) ) | 
						
							| 157 | 147 156 | syl | ⊢ ( 𝐽  ∈  𝐶  →  ( ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∈  𝒫  𝐽  →  ( ( 𝑋  =  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∧  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ≼  ω )  →  ∃ 𝑠  ∈  ( 𝒫  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∩  Fin ) 𝑋  =  ∪  𝑠 ) ) ) | 
						
							| 158 | 157 | ad2antrr | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  ( 𝑎  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑎  ≈  ω ) )  ∧  ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } ) )  →  ( ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∈  𝒫  𝐽  →  ( ( 𝑋  =  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∧  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ≼  ω )  →  ∃ 𝑠  ∈  ( 𝒫  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∩  Fin ) 𝑋  =  ∪  𝑠 ) ) ) | 
						
							| 159 | 140 158 | mpd | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  ( 𝑎  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑎  ≈  ω ) )  ∧  ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } ) )  →  ( ( 𝑋  =  ∪  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∧  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ≼  ω )  →  ∃ 𝑠  ∈  ( 𝒫  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∩  Fin ) 𝑋  =  ∪  𝑠 ) ) | 
						
							| 160 | 114 132 159 | mp2and | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  ( 𝑎  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑎  ≈  ω ) )  ∧  ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } ) )  →  ∃ 𝑠  ∈  ( 𝒫  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∩  Fin ) 𝑋  =  ∪  𝑠 ) | 
						
							| 161 |  | df-rex | ⊢ ( ∃ 𝑠  ∈  ( 𝒫  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∩  Fin ) 𝑋  =  ∪  𝑠  ↔  ∃ 𝑠 ( 𝑠  ∈  ( 𝒫  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∩  Fin )  ∧  𝑋  =  ∪  𝑠 ) ) | 
						
							| 162 |  | elinel1 | ⊢ ( 𝑠  ∈  ( 𝒫  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∩  Fin )  →  𝑠  ∈  𝒫  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } ) ) | 
						
							| 163 |  | velpw | ⊢ ( 𝑠  ∈  𝒫  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ↔  𝑠  ⊆  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } ) ) | 
						
							| 164 |  | ssdif | ⊢ ( 𝑠  ⊆  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  →  ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } )  ⊆  ( ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∖  { ( 𝑋  ∖  𝑎 ) } ) ) | 
						
							| 165 |  | difun2 | ⊢ ( ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∖  { ( 𝑋  ∖  𝑎 ) } )  =  ( ran  𝑓  ∖  { ( 𝑋  ∖  𝑎 ) } ) | 
						
							| 166 | 164 165 | sseqtrdi | ⊢ ( 𝑠  ⊆  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  →  ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } )  ⊆  ( ran  𝑓  ∖  { ( 𝑋  ∖  𝑎 ) } ) ) | 
						
							| 167 | 166 | difss2d | ⊢ ( 𝑠  ⊆  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  →  ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } )  ⊆  ran  𝑓 ) | 
						
							| 168 | 163 167 | sylbi | ⊢ ( 𝑠  ∈  𝒫  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  →  ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } )  ⊆  ran  𝑓 ) | 
						
							| 169 | 162 168 | syl | ⊢ ( 𝑠  ∈  ( 𝒫  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∩  Fin )  →  ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } )  ⊆  ran  𝑓 ) | 
						
							| 170 | 169 | a1i | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑎  ⊆  𝑋 )  →  ( 𝑠  ∈  ( 𝒫  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∩  Fin )  →  ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } )  ⊆  ran  𝑓 ) ) | 
						
							| 171 |  | sseq2 | ⊢ ( 𝑋  =  ∪  𝑠  →  ( 𝑎  ⊆  𝑋  ↔  𝑎  ⊆  ∪  𝑠 ) ) | 
						
							| 172 |  | uniexg | ⊢ ( 𝐽  ∈  Top  →  ∪  𝐽  ∈  V ) | 
						
							| 173 | 1 172 | eqeltrid | ⊢ ( 𝐽  ∈  Top  →  𝑋  ∈  V ) | 
						
							| 174 |  | difexg | ⊢ ( 𝑋  ∈  V  →  ( 𝑋  ∖  𝑎 )  ∈  V ) | 
						
							| 175 |  | unisng | ⊢ ( ( 𝑋  ∖  𝑎 )  ∈  V  →  ∪  { ( 𝑋  ∖  𝑎 ) }  =  ( 𝑋  ∖  𝑎 ) ) | 
						
							| 176 | 173 174 175 | 3syl | ⊢ ( 𝐽  ∈  Top  →  ∪  { ( 𝑋  ∖  𝑎 ) }  =  ( 𝑋  ∖  𝑎 ) ) | 
						
							| 177 | 176 | ineq2d | ⊢ ( 𝐽  ∈  Top  →  ( 𝑎  ∩  ∪  { ( 𝑋  ∖  𝑎 ) } )  =  ( 𝑎  ∩  ( 𝑋  ∖  𝑎 ) ) ) | 
						
							| 178 |  | disjdif | ⊢ ( 𝑎  ∩  ( 𝑋  ∖  𝑎 ) )  =  ∅ | 
						
							| 179 | 177 178 | eqtrdi | ⊢ ( 𝐽  ∈  Top  →  ( 𝑎  ∩  ∪  { ( 𝑋  ∖  𝑎 ) } )  =  ∅ ) | 
						
							| 180 |  | inunissunidif | ⊢ ( ( 𝑎  ∩  ∪  { ( 𝑋  ∖  𝑎 ) } )  =  ∅  →  ( 𝑎  ⊆  ∪  𝑠  ↔  𝑎  ⊆  ∪  ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } ) ) ) | 
						
							| 181 | 179 180 | syl | ⊢ ( 𝐽  ∈  Top  →  ( 𝑎  ⊆  ∪  𝑠  ↔  𝑎  ⊆  ∪  ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } ) ) ) | 
						
							| 182 | 171 181 | sylan9bbr | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑠 )  →  ( 𝑎  ⊆  𝑋  ↔  𝑎  ⊆  ∪  ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } ) ) ) | 
						
							| 183 | 182 | biimpd | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝑠 )  →  ( 𝑎  ⊆  𝑋  →  𝑎  ⊆  ∪  ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } ) ) ) | 
						
							| 184 | 183 | impancom | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑎  ⊆  𝑋 )  →  ( 𝑋  =  ∪  𝑠  →  𝑎  ⊆  ∪  ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } ) ) ) | 
						
							| 185 | 170 184 | anim12d | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑎  ⊆  𝑋 )  →  ( ( 𝑠  ∈  ( 𝒫  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∩  Fin )  ∧  𝑋  =  ∪  𝑠 )  →  ( ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } )  ⊆  ran  𝑓  ∧  𝑎  ⊆  ∪  ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } ) ) ) ) | 
						
							| 186 | 5 29 185 | syl2an | ⊢ ( ( 𝐽  ∈  𝐶  ∧  𝑎  ∈  ( Clsd ‘ 𝐽 ) )  →  ( ( 𝑠  ∈  ( 𝒫  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∩  Fin )  ∧  𝑋  =  ∪  𝑠 )  →  ( ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } )  ⊆  ran  𝑓  ∧  𝑎  ⊆  ∪  ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } ) ) ) ) | 
						
							| 187 | 186 | adantrr | ⊢ ( ( 𝐽  ∈  𝐶  ∧  ( 𝑎  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑎  ≈  ω ) )  →  ( ( 𝑠  ∈  ( 𝒫  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∩  Fin )  ∧  𝑋  =  ∪  𝑠 )  →  ( ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } )  ⊆  ran  𝑓  ∧  𝑎  ⊆  ∪  ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } ) ) ) ) | 
						
							| 188 | 187 | anim2d | ⊢ ( ( 𝐽  ∈  𝐶  ∧  ( 𝑎  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑎  ≈  ω ) )  →  ( ( ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } )  ∧  ( 𝑠  ∈  ( 𝒫  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∩  Fin )  ∧  𝑋  =  ∪  𝑠 ) )  →  ( ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } )  ∧  ( ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } )  ⊆  ran  𝑓  ∧  𝑎  ⊆  ∪  ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } ) ) ) ) ) | 
						
							| 189 | 118 | ad2antrr | ⊢ ( ( ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } )  ∧  ( ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } )  ⊆  ran  𝑓  ∧  𝑎  ⊆  ∪  ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } ) ) )  →  𝑎  ≈  ran  𝑓 ) | 
						
							| 190 |  | fvineqsneq | ⊢ ( ( ( 𝑓  Fn  𝑎  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } )  ∧  ( ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } )  ⊆  ran  𝑓  ∧  𝑎  ⊆  ∪  ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } ) ) )  →  ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } )  =  ran  𝑓 ) | 
						
							| 191 | 55 190 | sylanl1 | ⊢ ( ( ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } )  ∧  ( ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } )  ⊆  ran  𝑓  ∧  𝑎  ⊆  ∪  ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } ) ) )  →  ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } )  =  ran  𝑓 ) | 
						
							| 192 |  | vex | ⊢ 𝑠  ∈  V | 
						
							| 193 |  | difss | ⊢ ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } )  ⊆  𝑠 | 
						
							| 194 |  | ssdomg | ⊢ ( 𝑠  ∈  V  →  ( ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } )  ⊆  𝑠  →  ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } )  ≼  𝑠 ) ) | 
						
							| 195 | 192 193 194 | mp2 | ⊢ ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } )  ≼  𝑠 | 
						
							| 196 | 191 195 | eqbrtrrdi | ⊢ ( ( ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } )  ∧  ( ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } )  ⊆  ran  𝑓  ∧  𝑎  ⊆  ∪  ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } ) ) )  →  ran  𝑓  ≼  𝑠 ) | 
						
							| 197 |  | endomtr | ⊢ ( ( 𝑎  ≈  ran  𝑓  ∧  ran  𝑓  ≼  𝑠 )  →  𝑎  ≼  𝑠 ) | 
						
							| 198 | 189 196 197 | syl2anc | ⊢ ( ( ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } )  ∧  ( ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } )  ⊆  ran  𝑓  ∧  𝑎  ⊆  ∪  ( 𝑠  ∖  { ( 𝑋  ∖  𝑎 ) } ) ) )  →  𝑎  ≼  𝑠 ) | 
						
							| 199 | 188 198 | syl6 | ⊢ ( ( 𝐽  ∈  𝐶  ∧  ( 𝑎  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑎  ≈  ω ) )  →  ( ( ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } )  ∧  ( 𝑠  ∈  ( 𝒫  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∩  Fin )  ∧  𝑋  =  ∪  𝑠 ) )  →  𝑎  ≼  𝑠 ) ) | 
						
							| 200 | 199 | expdimp | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  ( 𝑎  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑎  ≈  ω ) )  ∧  ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } ) )  →  ( ( 𝑠  ∈  ( 𝒫  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∩  Fin )  ∧  𝑋  =  ∪  𝑠 )  →  𝑎  ≼  𝑠 ) ) | 
						
							| 201 |  | elinel2 | ⊢ ( 𝑠  ∈  ( 𝒫  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∩  Fin )  →  𝑠  ∈  Fin ) | 
						
							| 202 | 201 | adantr | ⊢ ( ( 𝑠  ∈  ( 𝒫  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∩  Fin )  ∧  𝑋  =  ∪  𝑠 )  →  𝑠  ∈  Fin ) | 
						
							| 203 | 202 | a1i | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  ( 𝑎  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑎  ≈  ω ) )  ∧  ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } ) )  →  ( ( 𝑠  ∈  ( 𝒫  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∩  Fin )  ∧  𝑋  =  ∪  𝑠 )  →  𝑠  ∈  Fin ) ) | 
						
							| 204 | 200 203 | jcad | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  ( 𝑎  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑎  ≈  ω ) )  ∧  ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } ) )  →  ( ( 𝑠  ∈  ( 𝒫  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∩  Fin )  ∧  𝑋  =  ∪  𝑠 )  →  ( 𝑎  ≼  𝑠  ∧  𝑠  ∈  Fin ) ) ) | 
						
							| 205 | 204 | eximdv | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  ( 𝑎  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑎  ≈  ω ) )  ∧  ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } ) )  →  ( ∃ 𝑠 ( 𝑠  ∈  ( 𝒫  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∩  Fin )  ∧  𝑋  =  ∪  𝑠 )  →  ∃ 𝑠 ( 𝑎  ≼  𝑠  ∧  𝑠  ∈  Fin ) ) ) | 
						
							| 206 | 161 205 | biimtrid | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  ( 𝑎  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑎  ≈  ω ) )  ∧  ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } ) )  →  ( ∃ 𝑠  ∈  ( 𝒫  ( ran  𝑓  ∪  { ( 𝑋  ∖  𝑎 ) } )  ∩  Fin ) 𝑋  =  ∪  𝑠  →  ∃ 𝑠 ( 𝑎  ≼  𝑠  ∧  𝑠  ∈  Fin ) ) ) | 
						
							| 207 | 160 206 | mpd | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  ( 𝑎  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑎  ≈  ω ) )  ∧  ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } ) )  →  ∃ 𝑠 ( 𝑎  ≼  𝑠  ∧  𝑠  ∈  Fin ) ) | 
						
							| 208 | 207 | ex | ⊢ ( ( 𝐽  ∈  𝐶  ∧  ( 𝑎  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑎  ≈  ω ) )  →  ( ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } )  →  ∃ 𝑠 ( 𝑎  ≼  𝑠  ∧  𝑠  ∈  Fin ) ) ) | 
						
							| 209 | 208 | exlimdv | ⊢ ( ( 𝐽  ∈  𝐶  ∧  ( 𝑎  ∈  ( Clsd ‘ 𝐽 )  ∧  𝑎  ≈  ω ) )  →  ( ∃ 𝑓 ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } )  →  ∃ 𝑠 ( 𝑎  ≼  𝑠  ∧  𝑠  ∈  Fin ) ) ) | 
						
							| 210 | 209 | anass1rs | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  𝑎  ≈  ω )  ∧  𝑎  ∈  ( Clsd ‘ 𝐽 ) )  →  ( ∃ 𝑓 ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } )  →  ∃ 𝑠 ( 𝑎  ≼  𝑠  ∧  𝑠  ∈  Fin ) ) ) | 
						
							| 211 | 210 | 3adant3 | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  𝑎  ≈  ω )  ∧  𝑎  ∈  ( Clsd ‘ 𝐽 )  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  =  ∅ )  →  ( ∃ 𝑓 ( 𝑓 : 𝑎 –1-1→ 𝐽  ∧  ∀ 𝑝  ∈  𝑎 ( ( 𝑓 ‘ 𝑝 )  ∩  𝑎 )  =  { 𝑝 } )  →  ∃ 𝑠 ( 𝑎  ≼  𝑠  ∧  𝑠  ∈  Fin ) ) ) | 
						
							| 212 | 45 211 | mpd | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  𝑎  ≈  ω )  ∧  𝑎  ∈  ( Clsd ‘ 𝐽 )  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  =  ∅ )  →  ∃ 𝑠 ( 𝑎  ≼  𝑠  ∧  𝑠  ∈  Fin ) ) | 
						
							| 213 | 18 27 28 212 | syl3anc | ⊢ ( ( ( ( 𝐽  ∈  𝐶  ∧  𝑎  ≈  ω )  ∧  𝑎  ⊆  𝑋 )  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  =  ∅ )  →  ∃ 𝑠 ( 𝑎  ≼  𝑠  ∧  𝑠  ∈  Fin ) ) | 
						
							| 214 | 213 | anasss | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  𝑎  ≈  ω )  ∧  ( 𝑎  ⊆  𝑋  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  =  ∅ ) )  →  ∃ 𝑠 ( 𝑎  ≼  𝑠  ∧  𝑠  ∈  Fin ) ) | 
						
							| 215 |  | isfinite | ⊢ ( 𝑠  ∈  Fin  ↔  𝑠  ≺  ω ) | 
						
							| 216 |  | domsdomtr | ⊢ ( ( 𝑎  ≼  𝑠  ∧  𝑠  ≺  ω )  →  𝑎  ≺  ω ) | 
						
							| 217 | 215 216 | sylan2b | ⊢ ( ( 𝑎  ≼  𝑠  ∧  𝑠  ∈  Fin )  →  𝑎  ≺  ω ) | 
						
							| 218 | 217 | exlimiv | ⊢ ( ∃ 𝑠 ( 𝑎  ≼  𝑠  ∧  𝑠  ∈  Fin )  →  𝑎  ≺  ω ) | 
						
							| 219 |  | sdomnen | ⊢ ( 𝑎  ≺  ω  →  ¬  𝑎  ≈  ω ) | 
						
							| 220 | 214 218 219 | 3syl | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  𝑎  ≈  ω )  ∧  ( 𝑎  ⊆  𝑋  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  =  ∅ ) )  →  ¬  𝑎  ≈  ω ) | 
						
							| 221 | 17 220 | pm2.65da | ⊢ ( ( 𝐽  ∈  𝐶  ∧  𝑎  ≈  ω )  →  ¬  ( 𝑎  ⊆  𝑋  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  =  ∅ ) ) | 
						
							| 222 |  | imnan | ⊢ ( ( 𝑎  ⊆  𝑋  →  ¬  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  =  ∅ )  ↔  ¬  ( 𝑎  ⊆  𝑋  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  =  ∅ ) ) | 
						
							| 223 | 221 222 | sylibr | ⊢ ( ( 𝐽  ∈  𝐶  ∧  𝑎  ≈  ω )  →  ( 𝑎  ⊆  𝑋  →  ¬  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  =  ∅ ) ) | 
						
							| 224 | 223 | imp | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  𝑎  ≈  ω )  ∧  𝑎  ⊆  𝑋 )  →  ¬  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  =  ∅ ) | 
						
							| 225 |  | neq0 | ⊢ ( ¬  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  =  ∅  ↔  ∃ 𝑠 𝑠  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ) | 
						
							| 226 | 224 225 | sylib | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  𝑎  ≈  ω )  ∧  𝑎  ⊆  𝑋 )  →  ∃ 𝑠 𝑠  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ) | 
						
							| 227 | 1 | lpss | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑎  ⊆  𝑋 )  →  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  ⊆  𝑋 ) | 
						
							| 228 | 5 227 | sylan | ⊢ ( ( 𝐽  ∈  𝐶  ∧  𝑎  ⊆  𝑋 )  →  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  ⊆  𝑋 ) | 
						
							| 229 | 228 | adantlr | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  𝑎  ≈  ω )  ∧  𝑎  ⊆  𝑋 )  →  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  ⊆  𝑋 ) | 
						
							| 230 | 229 | sseld | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  𝑎  ≈  ω )  ∧  𝑎  ⊆  𝑋 )  →  ( 𝑠  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  →  𝑠  ∈  𝑋 ) ) | 
						
							| 231 | 230 | ancrd | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  𝑎  ≈  ω )  ∧  𝑎  ⊆  𝑋 )  →  ( 𝑠  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  →  ( 𝑠  ∈  𝑋  ∧  𝑠  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ) ) ) | 
						
							| 232 | 231 | eximdv | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  𝑎  ≈  ω )  ∧  𝑎  ⊆  𝑋 )  →  ( ∃ 𝑠 𝑠  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  →  ∃ 𝑠 ( 𝑠  ∈  𝑋  ∧  𝑠  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ) ) ) | 
						
							| 233 |  | df-rex | ⊢ ( ∃ 𝑠  ∈  𝑋 𝑠  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  ↔  ∃ 𝑠 ( 𝑠  ∈  𝑋  ∧  𝑠  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ) ) | 
						
							| 234 | 232 233 | imbitrrdi | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  𝑎  ≈  ω )  ∧  𝑎  ⊆  𝑋 )  →  ( ∃ 𝑠 𝑠  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  →  ∃ 𝑠  ∈  𝑋 𝑠  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ) ) | 
						
							| 235 | 226 234 | mpd | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  𝑎  ≈  ω )  ∧  𝑎  ⊆  𝑋 )  →  ∃ 𝑠  ∈  𝑋 𝑠  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ) | 
						
							| 236 | 16 235 | sylan2 | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  𝑎  ≈  ω )  ∧  ( 𝑏  ⊆  𝑋  ∧  𝑎  ⊆  𝑏 ) )  →  ∃ 𝑠  ∈  𝑋 𝑠  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 ) ) | 
						
							| 237 | 1 | lpss3 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑏  ⊆  𝑋  ∧  𝑎  ⊆  𝑏 )  →  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  ⊆  ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) | 
						
							| 238 | 237 | 3expb | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝑏  ⊆  𝑋  ∧  𝑎  ⊆  𝑏 ) )  →  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  ⊆  ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) | 
						
							| 239 | 5 238 | sylan | ⊢ ( ( 𝐽  ∈  𝐶  ∧  ( 𝑏  ⊆  𝑋  ∧  𝑎  ⊆  𝑏 ) )  →  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  ⊆  ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) | 
						
							| 240 | 239 | adantlr | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  𝑎  ≈  ω )  ∧  ( 𝑏  ⊆  𝑋  ∧  𝑎  ⊆  𝑏 ) )  →  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  ⊆  ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) | 
						
							| 241 | 240 | sseld | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  𝑎  ≈  ω )  ∧  ( 𝑏  ⊆  𝑋  ∧  𝑎  ⊆  𝑏 ) )  →  ( 𝑠  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  →  𝑠  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) ) | 
						
							| 242 | 241 | reximdv | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  𝑎  ≈  ω )  ∧  ( 𝑏  ⊆  𝑋  ∧  𝑎  ⊆  𝑏 ) )  →  ( ∃ 𝑠  ∈  𝑋 𝑠  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑎 )  →  ∃ 𝑠  ∈  𝑋 𝑠  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) ) | 
						
							| 243 | 236 242 | mpd | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  𝑎  ≈  ω )  ∧  ( 𝑏  ⊆  𝑋  ∧  𝑎  ⊆  𝑏 ) )  →  ∃ 𝑠  ∈  𝑋 𝑠  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) | 
						
							| 244 | 243 | an42s | ⊢ ( ( ( 𝐽  ∈  𝐶  ∧  𝑏  ⊆  𝑋 )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑎  ≈  ω ) )  →  ∃ 𝑠  ∈  𝑋 𝑠  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) | 
						
							| 245 | 244 | ex | ⊢ ( ( 𝐽  ∈  𝐶  ∧  𝑏  ⊆  𝑋 )  →  ( ( 𝑎  ⊆  𝑏  ∧  𝑎  ≈  ω )  →  ∃ 𝑠  ∈  𝑋 𝑠  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) ) | 
						
							| 246 | 245 | exlimdv | ⊢ ( ( 𝐽  ∈  𝐶  ∧  𝑏  ⊆  𝑋 )  →  ( ∃ 𝑎 ( 𝑎  ⊆  𝑏  ∧  𝑎  ≈  ω )  →  ∃ 𝑠  ∈  𝑋 𝑠  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) ) | 
						
							| 247 | 246 | adantrr | ⊢ ( ( 𝐽  ∈  𝐶  ∧  ( 𝑏  ⊆  𝑋  ∧  ¬  𝑏  ∈  Fin ) )  →  ( ∃ 𝑎 ( 𝑎  ⊆  𝑏  ∧  𝑎  ≈  ω )  →  ∃ 𝑠  ∈  𝑋 𝑠  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) ) | 
						
							| 248 | 14 247 | mpd | ⊢ ( ( 𝐽  ∈  𝐶  ∧  ( 𝑏  ⊆  𝑋  ∧  ¬  𝑏  ∈  Fin ) )  →  ∃ 𝑠  ∈  𝑋 𝑠  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) | 
						
							| 249 | 8 248 | sylan2b | ⊢ ( ( 𝐽  ∈  𝐶  ∧  ( 𝑏  ∈  𝒫  𝑋  ∧  ¬  𝑏  ∈  Fin ) )  →  ∃ 𝑠  ∈  𝑋 𝑠  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) | 
						
							| 250 | 6 249 | sylan2b | ⊢ ( ( 𝐽  ∈  𝐶  ∧  𝑏  ∈  ( 𝒫  𝑋  ∖  Fin ) )  →  ∃ 𝑠  ∈  𝑋 𝑠  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) | 
						
							| 251 | 250 | ralrimiva | ⊢ ( 𝐽  ∈  𝐶  →  ∀ 𝑏  ∈  ( 𝒫  𝑋  ∖  Fin ) ∃ 𝑠  ∈  𝑋 𝑠  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) | 
						
							| 252 |  | simpr | ⊢ ( ( 𝑦  =  𝑏  ∧  𝑧  =  𝑠 )  →  𝑧  =  𝑠 ) | 
						
							| 253 |  | fveq2 | ⊢ ( 𝑦  =  𝑏  →  ( ( limPt ‘ 𝐽 ) ‘ 𝑦 )  =  ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) | 
						
							| 254 | 253 | adantr | ⊢ ( ( 𝑦  =  𝑏  ∧  𝑧  =  𝑠 )  →  ( ( limPt ‘ 𝐽 ) ‘ 𝑦 )  =  ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) | 
						
							| 255 | 252 254 | eleq12d | ⊢ ( ( 𝑦  =  𝑏  ∧  𝑧  =  𝑠 )  →  ( 𝑧  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑦 )  ↔  𝑠  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) ) | 
						
							| 256 | 255 | cbvrexdva | ⊢ ( 𝑦  =  𝑏  →  ( ∃ 𝑧  ∈  𝑋 𝑧  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑦 )  ↔  ∃ 𝑠  ∈  𝑋 𝑠  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) ) | 
						
							| 257 | 256 | cbvralvw | ⊢ ( ∀ 𝑦  ∈  ( 𝒫  𝑋  ∖  Fin ) ∃ 𝑧  ∈  𝑋 𝑧  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑦 )  ↔  ∀ 𝑏  ∈  ( 𝒫  𝑋  ∖  Fin ) ∃ 𝑠  ∈  𝑋 𝑠  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑏 ) ) | 
						
							| 258 | 251 257 | sylibr | ⊢ ( 𝐽  ∈  𝐶  →  ∀ 𝑦  ∈  ( 𝒫  𝑋  ∖  Fin ) ∃ 𝑧  ∈  𝑋 𝑧  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑦 ) ) | 
						
							| 259 | 1 3 | pibp21 | ⊢ ( 𝐽  ∈  𝑊  ↔  ( 𝐽  ∈  Top  ∧  ∀ 𝑦  ∈  ( 𝒫  𝑋  ∖  Fin ) ∃ 𝑧  ∈  𝑋 𝑧  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑦 ) ) ) | 
						
							| 260 | 5 258 259 | sylanbrc | ⊢ ( 𝐽  ∈  𝐶  →  𝐽  ∈  𝑊 ) |