| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pibp19.x | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | pibp19.19 | ⊢ 𝐶  =  { 𝑥  ∈  Top  ∣  ∀ 𝑦  ∈  𝒫  𝑥 ( ( ∪  𝑥  =  ∪  𝑦  ∧  𝑦  ≼  ω )  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) ∪  𝑥  =  ∪  𝑧 ) } | 
						
							| 3 |  | pweq | ⊢ ( 𝑥  =  𝐽  →  𝒫  𝑥  =  𝒫  𝐽 ) | 
						
							| 4 |  | unieq | ⊢ ( 𝑥  =  𝐽  →  ∪  𝑥  =  ∪  𝐽 ) | 
						
							| 5 | 4 1 | eqtr4di | ⊢ ( 𝑥  =  𝐽  →  ∪  𝑥  =  𝑋 ) | 
						
							| 6 | 5 | eqeq1d | ⊢ ( 𝑥  =  𝐽  →  ( ∪  𝑥  =  ∪  𝑦  ↔  𝑋  =  ∪  𝑦 ) ) | 
						
							| 7 | 6 | anbi1d | ⊢ ( 𝑥  =  𝐽  →  ( ( ∪  𝑥  =  ∪  𝑦  ∧  𝑦  ≼  ω )  ↔  ( 𝑋  =  ∪  𝑦  ∧  𝑦  ≼  ω ) ) ) | 
						
							| 8 | 5 | eqeq1d | ⊢ ( 𝑥  =  𝐽  →  ( ∪  𝑥  =  ∪  𝑧  ↔  𝑋  =  ∪  𝑧 ) ) | 
						
							| 9 | 8 | rexbidv | ⊢ ( 𝑥  =  𝐽  →  ( ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) ∪  𝑥  =  ∪  𝑧  ↔  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑧 ) ) | 
						
							| 10 | 7 9 | imbi12d | ⊢ ( 𝑥  =  𝐽  →  ( ( ( ∪  𝑥  =  ∪  𝑦  ∧  𝑦  ≼  ω )  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) ∪  𝑥  =  ∪  𝑧 )  ↔  ( ( 𝑋  =  ∪  𝑦  ∧  𝑦  ≼  ω )  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑧 ) ) ) | 
						
							| 11 | 3 10 | raleqbidv | ⊢ ( 𝑥  =  𝐽  →  ( ∀ 𝑦  ∈  𝒫  𝑥 ( ( ∪  𝑥  =  ∪  𝑦  ∧  𝑦  ≼  ω )  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) ∪  𝑥  =  ∪  𝑧 )  ↔  ∀ 𝑦  ∈  𝒫  𝐽 ( ( 𝑋  =  ∪  𝑦  ∧  𝑦  ≼  ω )  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑧 ) ) ) | 
						
							| 12 | 11 2 | elrab2 | ⊢ ( 𝐽  ∈  𝐶  ↔  ( 𝐽  ∈  Top  ∧  ∀ 𝑦  ∈  𝒫  𝐽 ( ( 𝑋  =  ∪  𝑦  ∧  𝑦  ≼  ω )  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑧 ) ) ) |