Step |
Hyp |
Ref |
Expression |
1 |
|
pibp19.x |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
pibp19.19 |
⊢ 𝐶 = { 𝑥 ∈ Top ∣ ∀ 𝑦 ∈ 𝒫 𝑥 ( ( ∪ 𝑥 = ∪ 𝑦 ∧ 𝑦 ≼ ω ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝑥 = ∪ 𝑧 ) } |
3 |
|
pweq |
⊢ ( 𝑥 = 𝐽 → 𝒫 𝑥 = 𝒫 𝐽 ) |
4 |
|
unieq |
⊢ ( 𝑥 = 𝐽 → ∪ 𝑥 = ∪ 𝐽 ) |
5 |
4 1
|
eqtr4di |
⊢ ( 𝑥 = 𝐽 → ∪ 𝑥 = 𝑋 ) |
6 |
5
|
eqeq1d |
⊢ ( 𝑥 = 𝐽 → ( ∪ 𝑥 = ∪ 𝑦 ↔ 𝑋 = ∪ 𝑦 ) ) |
7 |
6
|
anbi1d |
⊢ ( 𝑥 = 𝐽 → ( ( ∪ 𝑥 = ∪ 𝑦 ∧ 𝑦 ≼ ω ) ↔ ( 𝑋 = ∪ 𝑦 ∧ 𝑦 ≼ ω ) ) ) |
8 |
5
|
eqeq1d |
⊢ ( 𝑥 = 𝐽 → ( ∪ 𝑥 = ∪ 𝑧 ↔ 𝑋 = ∪ 𝑧 ) ) |
9 |
8
|
rexbidv |
⊢ ( 𝑥 = 𝐽 → ( ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝑥 = ∪ 𝑧 ↔ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) |
10 |
7 9
|
imbi12d |
⊢ ( 𝑥 = 𝐽 → ( ( ( ∪ 𝑥 = ∪ 𝑦 ∧ 𝑦 ≼ ω ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝑥 = ∪ 𝑧 ) ↔ ( ( 𝑋 = ∪ 𝑦 ∧ 𝑦 ≼ ω ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) ) |
11 |
3 10
|
raleqbidv |
⊢ ( 𝑥 = 𝐽 → ( ∀ 𝑦 ∈ 𝒫 𝑥 ( ( ∪ 𝑥 = ∪ 𝑦 ∧ 𝑦 ≼ ω ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝑥 = ∪ 𝑧 ) ↔ ∀ 𝑦 ∈ 𝒫 𝐽 ( ( 𝑋 = ∪ 𝑦 ∧ 𝑦 ≼ ω ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) ) |
12 |
11 2
|
elrab2 |
⊢ ( 𝐽 ∈ 𝐶 ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝐽 ( ( 𝑋 = ∪ 𝑦 ∧ 𝑦 ≼ ω ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) ) |