Metamath Proof Explorer


Theorem pibp19

Description: Property P000019 of pi-base. The class of countably compact topologies. A space X is countably compact if every countable open cover of X has a finite subcover. (Contributed by ML, 8-Dec-2020)

Ref Expression
Hypotheses pibp19.x 𝑋 = 𝐽
pibp19.19 𝐶 = { 𝑥 ∈ Top ∣ ∀ 𝑦 ∈ 𝒫 𝑥 ( ( 𝑥 = 𝑦𝑦 ≼ ω ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑥 = 𝑧 ) }
Assertion pibp19 ( 𝐽𝐶 ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝐽 ( ( 𝑋 = 𝑦𝑦 ≼ ω ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 pibp19.x 𝑋 = 𝐽
2 pibp19.19 𝐶 = { 𝑥 ∈ Top ∣ ∀ 𝑦 ∈ 𝒫 𝑥 ( ( 𝑥 = 𝑦𝑦 ≼ ω ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑥 = 𝑧 ) }
3 pweq ( 𝑥 = 𝐽 → 𝒫 𝑥 = 𝒫 𝐽 )
4 unieq ( 𝑥 = 𝐽 𝑥 = 𝐽 )
5 4 1 eqtr4di ( 𝑥 = 𝐽 𝑥 = 𝑋 )
6 5 eqeq1d ( 𝑥 = 𝐽 → ( 𝑥 = 𝑦𝑋 = 𝑦 ) )
7 6 anbi1d ( 𝑥 = 𝐽 → ( ( 𝑥 = 𝑦𝑦 ≼ ω ) ↔ ( 𝑋 = 𝑦𝑦 ≼ ω ) ) )
8 5 eqeq1d ( 𝑥 = 𝐽 → ( 𝑥 = 𝑧𝑋 = 𝑧 ) )
9 8 rexbidv ( 𝑥 = 𝐽 → ( ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑥 = 𝑧 ↔ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) )
10 7 9 imbi12d ( 𝑥 = 𝐽 → ( ( ( 𝑥 = 𝑦𝑦 ≼ ω ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑥 = 𝑧 ) ↔ ( ( 𝑋 = 𝑦𝑦 ≼ ω ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) ) )
11 3 10 raleqbidv ( 𝑥 = 𝐽 → ( ∀ 𝑦 ∈ 𝒫 𝑥 ( ( 𝑥 = 𝑦𝑦 ≼ ω ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑥 = 𝑧 ) ↔ ∀ 𝑦 ∈ 𝒫 𝐽 ( ( 𝑋 = 𝑦𝑦 ≼ ω ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) ) )
12 11 2 elrab2 ( 𝐽𝐶 ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝐽 ( ( 𝑋 = 𝑦𝑦 ≼ ω ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) ) )