Metamath Proof Explorer


Theorem pibp21

Description: Property P000021 of pi-base. The class of weakly countably compact topologies, or limit point compact topologies. A space X is weakly countably compact if every infinite subset of X has a limit point. (Contributed by ML, 9-Dec-2020)

Ref Expression
Hypotheses pibp21.x 𝑋 = 𝐽
pibp21.21 𝑊 = { 𝑥 ∈ Top ∣ ∀ 𝑦 ∈ ( 𝒫 𝑥 ∖ Fin ) ∃ 𝑧 𝑥 𝑧 ∈ ( ( limPt ‘ 𝑥 ) ‘ 𝑦 ) }
Assertion pibp21 ( 𝐽𝑊 ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ ( 𝒫 𝑋 ∖ Fin ) ∃ 𝑧𝑋 𝑧 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 pibp21.x 𝑋 = 𝐽
2 pibp21.21 𝑊 = { 𝑥 ∈ Top ∣ ∀ 𝑦 ∈ ( 𝒫 𝑥 ∖ Fin ) ∃ 𝑧 𝑥 𝑧 ∈ ( ( limPt ‘ 𝑥 ) ‘ 𝑦 ) }
3 unieq ( 𝑥 = 𝐽 𝑥 = 𝐽 )
4 3 1 eqtr4di ( 𝑥 = 𝐽 𝑥 = 𝑋 )
5 4 pweqd ( 𝑥 = 𝐽 → 𝒫 𝑥 = 𝒫 𝑋 )
6 5 difeq1d ( 𝑥 = 𝐽 → ( 𝒫 𝑥 ∖ Fin ) = ( 𝒫 𝑋 ∖ Fin ) )
7 fveq2 ( 𝑥 = 𝐽 → ( limPt ‘ 𝑥 ) = ( limPt ‘ 𝐽 ) )
8 7 fveq1d ( 𝑥 = 𝐽 → ( ( limPt ‘ 𝑥 ) ‘ 𝑦 ) = ( ( limPt ‘ 𝐽 ) ‘ 𝑦 ) )
9 8 eleq2d ( 𝑥 = 𝐽 → ( 𝑧 ∈ ( ( limPt ‘ 𝑥 ) ‘ 𝑦 ) ↔ 𝑧 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑦 ) ) )
10 4 9 rexeqbidv ( 𝑥 = 𝐽 → ( ∃ 𝑧 𝑥 𝑧 ∈ ( ( limPt ‘ 𝑥 ) ‘ 𝑦 ) ↔ ∃ 𝑧𝑋 𝑧 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑦 ) ) )
11 6 10 raleqbidv ( 𝑥 = 𝐽 → ( ∀ 𝑦 ∈ ( 𝒫 𝑥 ∖ Fin ) ∃ 𝑧 𝑥 𝑧 ∈ ( ( limPt ‘ 𝑥 ) ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ ( 𝒫 𝑋 ∖ Fin ) ∃ 𝑧𝑋 𝑧 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑦 ) ) )
12 11 2 elrab2 ( 𝐽𝑊 ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ ( 𝒫 𝑋 ∖ Fin ) ∃ 𝑧𝑋 𝑧 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑦 ) ) )