| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pibp21.x | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | pibp21.21 | ⊢ 𝑊  =  { 𝑥  ∈  Top  ∣  ∀ 𝑦  ∈  ( 𝒫  ∪  𝑥  ∖  Fin ) ∃ 𝑧  ∈  ∪  𝑥 𝑧  ∈  ( ( limPt ‘ 𝑥 ) ‘ 𝑦 ) } | 
						
							| 3 |  | unieq | ⊢ ( 𝑥  =  𝐽  →  ∪  𝑥  =  ∪  𝐽 ) | 
						
							| 4 | 3 1 | eqtr4di | ⊢ ( 𝑥  =  𝐽  →  ∪  𝑥  =  𝑋 ) | 
						
							| 5 | 4 | pweqd | ⊢ ( 𝑥  =  𝐽  →  𝒫  ∪  𝑥  =  𝒫  𝑋 ) | 
						
							| 6 | 5 | difeq1d | ⊢ ( 𝑥  =  𝐽  →  ( 𝒫  ∪  𝑥  ∖  Fin )  =  ( 𝒫  𝑋  ∖  Fin ) ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑥  =  𝐽  →  ( limPt ‘ 𝑥 )  =  ( limPt ‘ 𝐽 ) ) | 
						
							| 8 | 7 | fveq1d | ⊢ ( 𝑥  =  𝐽  →  ( ( limPt ‘ 𝑥 ) ‘ 𝑦 )  =  ( ( limPt ‘ 𝐽 ) ‘ 𝑦 ) ) | 
						
							| 9 | 8 | eleq2d | ⊢ ( 𝑥  =  𝐽  →  ( 𝑧  ∈  ( ( limPt ‘ 𝑥 ) ‘ 𝑦 )  ↔  𝑧  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑦 ) ) ) | 
						
							| 10 | 4 9 | rexeqbidv | ⊢ ( 𝑥  =  𝐽  →  ( ∃ 𝑧  ∈  ∪  𝑥 𝑧  ∈  ( ( limPt ‘ 𝑥 ) ‘ 𝑦 )  ↔  ∃ 𝑧  ∈  𝑋 𝑧  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑦 ) ) ) | 
						
							| 11 | 6 10 | raleqbidv | ⊢ ( 𝑥  =  𝐽  →  ( ∀ 𝑦  ∈  ( 𝒫  ∪  𝑥  ∖  Fin ) ∃ 𝑧  ∈  ∪  𝑥 𝑧  ∈  ( ( limPt ‘ 𝑥 ) ‘ 𝑦 )  ↔  ∀ 𝑦  ∈  ( 𝒫  𝑋  ∖  Fin ) ∃ 𝑧  ∈  𝑋 𝑧  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑦 ) ) ) | 
						
							| 12 | 11 2 | elrab2 | ⊢ ( 𝐽  ∈  𝑊  ↔  ( 𝐽  ∈  Top  ∧  ∀ 𝑦  ∈  ( 𝒫  𝑋  ∖  Fin ) ∃ 𝑧  ∈  𝑋 𝑧  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑦 ) ) ) |