Step |
Hyp |
Ref |
Expression |
1 |
|
pibp21.x |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
pibp21.21 |
⊢ 𝑊 = { 𝑥 ∈ Top ∣ ∀ 𝑦 ∈ ( 𝒫 ∪ 𝑥 ∖ Fin ) ∃ 𝑧 ∈ ∪ 𝑥 𝑧 ∈ ( ( limPt ‘ 𝑥 ) ‘ 𝑦 ) } |
3 |
|
unieq |
⊢ ( 𝑥 = 𝐽 → ∪ 𝑥 = ∪ 𝐽 ) |
4 |
3 1
|
eqtr4di |
⊢ ( 𝑥 = 𝐽 → ∪ 𝑥 = 𝑋 ) |
5 |
4
|
pweqd |
⊢ ( 𝑥 = 𝐽 → 𝒫 ∪ 𝑥 = 𝒫 𝑋 ) |
6 |
5
|
difeq1d |
⊢ ( 𝑥 = 𝐽 → ( 𝒫 ∪ 𝑥 ∖ Fin ) = ( 𝒫 𝑋 ∖ Fin ) ) |
7 |
|
fveq2 |
⊢ ( 𝑥 = 𝐽 → ( limPt ‘ 𝑥 ) = ( limPt ‘ 𝐽 ) ) |
8 |
7
|
fveq1d |
⊢ ( 𝑥 = 𝐽 → ( ( limPt ‘ 𝑥 ) ‘ 𝑦 ) = ( ( limPt ‘ 𝐽 ) ‘ 𝑦 ) ) |
9 |
8
|
eleq2d |
⊢ ( 𝑥 = 𝐽 → ( 𝑧 ∈ ( ( limPt ‘ 𝑥 ) ‘ 𝑦 ) ↔ 𝑧 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑦 ) ) ) |
10 |
4 9
|
rexeqbidv |
⊢ ( 𝑥 = 𝐽 → ( ∃ 𝑧 ∈ ∪ 𝑥 𝑧 ∈ ( ( limPt ‘ 𝑥 ) ‘ 𝑦 ) ↔ ∃ 𝑧 ∈ 𝑋 𝑧 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑦 ) ) ) |
11 |
6 10
|
raleqbidv |
⊢ ( 𝑥 = 𝐽 → ( ∀ 𝑦 ∈ ( 𝒫 ∪ 𝑥 ∖ Fin ) ∃ 𝑧 ∈ ∪ 𝑥 𝑧 ∈ ( ( limPt ‘ 𝑥 ) ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ ( 𝒫 𝑋 ∖ Fin ) ∃ 𝑧 ∈ 𝑋 𝑧 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑦 ) ) ) |
12 |
11 2
|
elrab2 |
⊢ ( 𝐽 ∈ 𝑊 ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ ( 𝒫 𝑋 ∖ Fin ) ∃ 𝑧 ∈ 𝑋 𝑧 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑦 ) ) ) |