Metamath Proof Explorer


Theorem pibp21

Description: Property P000021 of pi-base. The class of weakly countably compact topologies, or limit point compact topologies. A space X is weakly countably compact if every infinite subset of X has a limit point. (Contributed by ML, 9-Dec-2020)

Ref Expression
Hypotheses pibp21.x X=J
pibp21.21 W=xTop|y𝒫xFinzxzlimPtxy
Assertion pibp21 JWJTopy𝒫XFinzXzlimPtJy

Proof

Step Hyp Ref Expression
1 pibp21.x X=J
2 pibp21.21 W=xTop|y𝒫xFinzxzlimPtxy
3 unieq x=Jx=J
4 3 1 eqtr4di x=Jx=X
5 4 pweqd x=J𝒫x=𝒫X
6 5 difeq1d x=J𝒫xFin=𝒫XFin
7 fveq2 x=JlimPtx=limPtJ
8 7 fveq1d x=JlimPtxy=limPtJy
9 8 eleq2d x=JzlimPtxyzlimPtJy
10 4 9 rexeqbidv x=JzxzlimPtxyzXzlimPtJy
11 6 10 raleqbidv x=Jy𝒫xFinzxzlimPtxyy𝒫XFinzXzlimPtJy
12 11 2 elrab2 JWJTopy𝒫XFinzXzlimPtJy