Metamath Proof Explorer


Theorem pibp21

Description: Property P000021 of pi-base. The class of weakly countably compact topologies, or limit point compact topologies. A space X is weakly countably compact if every infinite subset of X has a limit point. (Contributed by ML, 9-Dec-2020)

Ref Expression
Hypotheses pibp21.x
|- X = U. J
pibp21.21
|- W = { x e. Top | A. y e. ( ~P U. x \ Fin ) E. z e. U. x z e. ( ( limPt ` x ) ` y ) }
Assertion pibp21
|- ( J e. W <-> ( J e. Top /\ A. y e. ( ~P X \ Fin ) E. z e. X z e. ( ( limPt ` J ) ` y ) ) )

Proof

Step Hyp Ref Expression
1 pibp21.x
 |-  X = U. J
2 pibp21.21
 |-  W = { x e. Top | A. y e. ( ~P U. x \ Fin ) E. z e. U. x z e. ( ( limPt ` x ) ` y ) }
3 unieq
 |-  ( x = J -> U. x = U. J )
4 3 1 eqtr4di
 |-  ( x = J -> U. x = X )
5 4 pweqd
 |-  ( x = J -> ~P U. x = ~P X )
6 5 difeq1d
 |-  ( x = J -> ( ~P U. x \ Fin ) = ( ~P X \ Fin ) )
7 fveq2
 |-  ( x = J -> ( limPt ` x ) = ( limPt ` J ) )
8 7 fveq1d
 |-  ( x = J -> ( ( limPt ` x ) ` y ) = ( ( limPt ` J ) ` y ) )
9 8 eleq2d
 |-  ( x = J -> ( z e. ( ( limPt ` x ) ` y ) <-> z e. ( ( limPt ` J ) ` y ) ) )
10 4 9 rexeqbidv
 |-  ( x = J -> ( E. z e. U. x z e. ( ( limPt ` x ) ` y ) <-> E. z e. X z e. ( ( limPt ` J ) ` y ) ) )
11 6 10 raleqbidv
 |-  ( x = J -> ( A. y e. ( ~P U. x \ Fin ) E. z e. U. x z e. ( ( limPt ` x ) ` y ) <-> A. y e. ( ~P X \ Fin ) E. z e. X z e. ( ( limPt ` J ) ` y ) ) )
12 11 2 elrab2
 |-  ( J e. W <-> ( J e. Top /\ A. y e. ( ~P X \ Fin ) E. z e. X z e. ( ( limPt ` J ) ` y ) ) )