Metamath Proof Explorer


Theorem inunissunidif

Description: Theorem about subsets of the difference of unions. (Contributed by ML, 29-Mar-2021)

Ref Expression
Assertion inunissunidif ( ( 𝐴 𝐶 ) = ∅ → ( 𝐴 𝐵𝐴 ( 𝐵𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 reldisj ( 𝐴 𝐵 → ( ( 𝐴 𝐶 ) = ∅ ↔ 𝐴 ⊆ ( 𝐵 𝐶 ) ) )
2 difunieq ( 𝐵 𝐶 ) ⊆ ( 𝐵𝐶 )
3 sstr ( ( 𝐴 ⊆ ( 𝐵 𝐶 ) ∧ ( 𝐵 𝐶 ) ⊆ ( 𝐵𝐶 ) ) → 𝐴 ( 𝐵𝐶 ) )
4 2 3 mpan2 ( 𝐴 ⊆ ( 𝐵 𝐶 ) → 𝐴 ( 𝐵𝐶 ) )
5 1 4 syl6bi ( 𝐴 𝐵 → ( ( 𝐴 𝐶 ) = ∅ → 𝐴 ( 𝐵𝐶 ) ) )
6 5 com12 ( ( 𝐴 𝐶 ) = ∅ → ( 𝐴 𝐵𝐴 ( 𝐵𝐶 ) ) )
7 difss ( 𝐵𝐶 ) ⊆ 𝐵
8 7 unissi ( 𝐵𝐶 ) ⊆ 𝐵
9 sstr ( ( 𝐴 ( 𝐵𝐶 ) ∧ ( 𝐵𝐶 ) ⊆ 𝐵 ) → 𝐴 𝐵 )
10 8 9 mpan2 ( 𝐴 ( 𝐵𝐶 ) → 𝐴 𝐵 )
11 6 10 impbid1 ( ( 𝐴 𝐶 ) = ∅ → ( 𝐴 𝐵𝐴 ( 𝐵𝐶 ) ) )