Step |
Hyp |
Ref |
Expression |
1 |
|
reldisj |
⊢ ( 𝐴 ⊆ ∪ 𝐵 → ( ( 𝐴 ∩ ∪ 𝐶 ) = ∅ ↔ 𝐴 ⊆ ( ∪ 𝐵 ∖ ∪ 𝐶 ) ) ) |
2 |
|
difunieq |
⊢ ( ∪ 𝐵 ∖ ∪ 𝐶 ) ⊆ ∪ ( 𝐵 ∖ 𝐶 ) |
3 |
|
sstr |
⊢ ( ( 𝐴 ⊆ ( ∪ 𝐵 ∖ ∪ 𝐶 ) ∧ ( ∪ 𝐵 ∖ ∪ 𝐶 ) ⊆ ∪ ( 𝐵 ∖ 𝐶 ) ) → 𝐴 ⊆ ∪ ( 𝐵 ∖ 𝐶 ) ) |
4 |
2 3
|
mpan2 |
⊢ ( 𝐴 ⊆ ( ∪ 𝐵 ∖ ∪ 𝐶 ) → 𝐴 ⊆ ∪ ( 𝐵 ∖ 𝐶 ) ) |
5 |
1 4
|
syl6bi |
⊢ ( 𝐴 ⊆ ∪ 𝐵 → ( ( 𝐴 ∩ ∪ 𝐶 ) = ∅ → 𝐴 ⊆ ∪ ( 𝐵 ∖ 𝐶 ) ) ) |
6 |
5
|
com12 |
⊢ ( ( 𝐴 ∩ ∪ 𝐶 ) = ∅ → ( 𝐴 ⊆ ∪ 𝐵 → 𝐴 ⊆ ∪ ( 𝐵 ∖ 𝐶 ) ) ) |
7 |
|
difss |
⊢ ( 𝐵 ∖ 𝐶 ) ⊆ 𝐵 |
8 |
7
|
unissi |
⊢ ∪ ( 𝐵 ∖ 𝐶 ) ⊆ ∪ 𝐵 |
9 |
|
sstr |
⊢ ( ( 𝐴 ⊆ ∪ ( 𝐵 ∖ 𝐶 ) ∧ ∪ ( 𝐵 ∖ 𝐶 ) ⊆ ∪ 𝐵 ) → 𝐴 ⊆ ∪ 𝐵 ) |
10 |
8 9
|
mpan2 |
⊢ ( 𝐴 ⊆ ∪ ( 𝐵 ∖ 𝐶 ) → 𝐴 ⊆ ∪ 𝐵 ) |
11 |
6 10
|
impbid1 |
⊢ ( ( 𝐴 ∩ ∪ 𝐶 ) = ∅ → ( 𝐴 ⊆ ∪ 𝐵 ↔ 𝐴 ⊆ ∪ ( 𝐵 ∖ 𝐶 ) ) ) |