Metamath Proof Explorer


Theorem rdgellim

Description: Elementhood in a recursive definition at a limit ordinal. (Contributed by ML, 30-Mar-2022)

Ref Expression
Assertion rdgellim ( ( ( 𝐵 ∈ On ∧ Lim 𝐵 ) ∧ 𝐶𝐵 ) → ( 𝑋 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐶 ) → 𝑋 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝑦 = 𝐶 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) = ( rec ( 𝐹 , 𝐴 ) ‘ 𝐶 ) )
2 1 eleq2d ( 𝑦 = 𝐶 → ( 𝑋 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ↔ 𝑋 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐶 ) ) )
3 2 rspcev ( ( 𝐶𝐵𝑋 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐶 ) ) → ∃ 𝑦𝐵 𝑋 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) )
4 3 ex ( 𝐶𝐵 → ( 𝑋 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐶 ) → ∃ 𝑦𝐵 𝑋 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ) )
5 eliun ( 𝑋 𝑦𝐵 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ↔ ∃ 𝑦𝐵 𝑋 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) )
6 4 5 syl6ibr ( 𝐶𝐵 → ( 𝑋 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐶 ) → 𝑋 𝑦𝐵 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ) )
7 6 adantl ( ( ( 𝐵 ∈ On ∧ Lim 𝐵 ) ∧ 𝐶𝐵 ) → ( 𝑋 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐶 ) → 𝑋 𝑦𝐵 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ) )
8 rdglim2a ( ( 𝐵 ∈ On ∧ Lim 𝐵 ) → ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) = 𝑦𝐵 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) )
9 8 eleq2d ( ( 𝐵 ∈ On ∧ Lim 𝐵 ) → ( 𝑋 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) ↔ 𝑋 𝑦𝐵 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ) )
10 9 adantr ( ( ( 𝐵 ∈ On ∧ Lim 𝐵 ) ∧ 𝐶𝐵 ) → ( 𝑋 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) ↔ 𝑋 𝑦𝐵 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ) )
11 7 10 sylibrd ( ( ( 𝐵 ∈ On ∧ Lim 𝐵 ) ∧ 𝐶𝐵 ) → ( 𝑋 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐶 ) → 𝑋 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) ) )