Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝑦 = 𝐶 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) = ( rec ( 𝐹 , 𝐴 ) ‘ 𝐶 ) ) |
2 |
1
|
eleq2d |
⊢ ( 𝑦 = 𝐶 → ( 𝑋 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ↔ 𝑋 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐶 ) ) ) |
3 |
2
|
rspcev |
⊢ ( ( 𝐶 ∈ 𝐵 ∧ 𝑋 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐶 ) ) → ∃ 𝑦 ∈ 𝐵 𝑋 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ) |
4 |
3
|
ex |
⊢ ( 𝐶 ∈ 𝐵 → ( 𝑋 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐶 ) → ∃ 𝑦 ∈ 𝐵 𝑋 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ) ) |
5 |
|
eliun |
⊢ ( 𝑋 ∈ ∪ 𝑦 ∈ 𝐵 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ 𝐵 𝑋 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ) |
6 |
4 5
|
syl6ibr |
⊢ ( 𝐶 ∈ 𝐵 → ( 𝑋 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐶 ) → 𝑋 ∈ ∪ 𝑦 ∈ 𝐵 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ) ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝐵 ) ∧ 𝐶 ∈ 𝐵 ) → ( 𝑋 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐶 ) → 𝑋 ∈ ∪ 𝑦 ∈ 𝐵 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ) ) |
8 |
|
rdglim2a |
⊢ ( ( 𝐵 ∈ On ∧ Lim 𝐵 ) → ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) = ∪ 𝑦 ∈ 𝐵 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ) |
9 |
8
|
eleq2d |
⊢ ( ( 𝐵 ∈ On ∧ Lim 𝐵 ) → ( 𝑋 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) ↔ 𝑋 ∈ ∪ 𝑦 ∈ 𝐵 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ) ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝐵 ) ∧ 𝐶 ∈ 𝐵 ) → ( 𝑋 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) ↔ 𝑋 ∈ ∪ 𝑦 ∈ 𝐵 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ) ) |
11 |
7 10
|
sylibrd |
⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝐵 ) ∧ 𝐶 ∈ 𝐵 ) → ( 𝑋 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐶 ) → 𝑋 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) ) ) |