Description: A recursive definition at a limit ordinal is a superset of itself at any smaller ordinal. (Contributed by ML, 30-Mar-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | rdglimss | ⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝐵 ) ∧ 𝐶 ∈ 𝐵 ) → ( rec ( 𝐹 , 𝐴 ) ‘ 𝐶 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgellim | ⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝐵 ) ∧ 𝐶 ∈ 𝐵 ) → ( 𝑥 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐶 ) → 𝑥 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) ) ) | |
2 | 1 | ssrdv | ⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝐵 ) ∧ 𝐶 ∈ 𝐵 ) → ( rec ( 𝐹 , 𝐴 ) ‘ 𝐶 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) ) |