Metamath Proof Explorer


Theorem rdglimss

Description: A recursive definition at a limit ordinal is a superset of itself at any smaller ordinal. (Contributed by ML, 30-Mar-2022)

Ref Expression
Assertion rdglimss ( ( ( 𝐵 ∈ On ∧ Lim 𝐵 ) ∧ 𝐶𝐵 ) → ( rec ( 𝐹 , 𝐴 ) ‘ 𝐶 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 rdgellim ( ( ( 𝐵 ∈ On ∧ Lim 𝐵 ) ∧ 𝐶𝐵 ) → ( 𝑥 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐶 ) → 𝑥 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) ) )
2 1 ssrdv ( ( ( 𝐵 ∈ On ∧ Lim 𝐵 ) ∧ 𝐶𝐵 ) → ( rec ( 𝐹 , 𝐴 ) ‘ 𝐶 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) )