Metamath Proof Explorer


Theorem rdglimss

Description: A recursive definition at a limit ordinal is a superset of itself at any smaller ordinal. (Contributed by ML, 30-Mar-2022)

Ref Expression
Assertion rdglimss
|- ( ( ( B e. On /\ Lim B ) /\ C e. B ) -> ( rec ( F , A ) ` C ) C_ ( rec ( F , A ) ` B ) )

Proof

Step Hyp Ref Expression
1 rdgellim
 |-  ( ( ( B e. On /\ Lim B ) /\ C e. B ) -> ( x e. ( rec ( F , A ) ` C ) -> x e. ( rec ( F , A ) ` B ) ) )
2 1 ssrdv
 |-  ( ( ( B e. On /\ Lim B ) /\ C e. B ) -> ( rec ( F , A ) ` C ) C_ ( rec ( F , A ) ` B ) )