Description: A recursive definition at a limit ordinal is a superset of itself at any smaller ordinal. (Contributed by ML, 30-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rdglimss | |- ( ( ( B e. On /\ Lim B ) /\ C e. B ) -> ( rec ( F , A ) ` C ) C_ ( rec ( F , A ) ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgellim | |- ( ( ( B e. On /\ Lim B ) /\ C e. B ) -> ( x e. ( rec ( F , A ) ` C ) -> x e. ( rec ( F , A ) ` B ) ) ) |
|
| 2 | 1 | ssrdv | |- ( ( ( B e. On /\ Lim B ) /\ C e. B ) -> ( rec ( F , A ) ` C ) C_ ( rec ( F , A ) ` B ) ) |