Metamath Proof Explorer


Theorem rdgellim

Description: Elementhood in a recursive definition at a limit ordinal. (Contributed by ML, 30-Mar-2022)

Ref Expression
Assertion rdgellim BOnLimBCBXrecFACXrecFAB

Proof

Step Hyp Ref Expression
1 fveq2 y=CrecFAy=recFAC
2 1 eleq2d y=CXrecFAyXrecFAC
3 2 rspcev CBXrecFACyBXrecFAy
4 3 ex CBXrecFACyBXrecFAy
5 eliun XyBrecFAyyBXrecFAy
6 4 5 imbitrrdi CBXrecFACXyBrecFAy
7 6 adantl BOnLimBCBXrecFACXyBrecFAy
8 rdglim2a BOnLimBrecFAB=yBrecFAy
9 8 eleq2d BOnLimBXrecFABXyBrecFAy
10 9 adantr BOnLimBCBXrecFABXyBrecFAy
11 7 10 sylibrd BOnLimBCBXrecFACXrecFAB