Metamath Proof Explorer


Theorem inunissunidif

Description: Theorem about subsets of the difference of unions. (Contributed by ML, 29-Mar-2021)

Ref Expression
Assertion inunissunidif A C = A B A B C

Proof

Step Hyp Ref Expression
1 reldisj A B A C = A B C
2 difunieq B C B C
3 sstr A B C B C B C A B C
4 2 3 mpan2 A B C A B C
5 1 4 syl6bi A B A C = A B C
6 5 com12 A C = A B A B C
7 difss B C B
8 7 unissi B C B
9 sstr A B C B C B A B
10 8 9 mpan2 A B C A B
11 6 10 impbid1 A C = A B A B C