Step |
Hyp |
Ref |
Expression |
1 |
|
eluni |
⊢ ( 𝑥 ∈ ∪ 𝐴 ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) |
2 |
|
eluni |
⊢ ( 𝑥 ∈ ∪ 𝐵 ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) |
3 |
2
|
notbii |
⊢ ( ¬ 𝑥 ∈ ∪ 𝐵 ↔ ¬ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) |
4 |
|
alinexa |
⊢ ( ∀ 𝑦 ( 𝑥 ∈ 𝑦 → ¬ 𝑦 ∈ 𝐵 ) ↔ ¬ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) |
5 |
|
nfa1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 ( 𝑥 ∈ 𝑦 → ¬ 𝑦 ∈ 𝐵 ) |
6 |
|
sp |
⊢ ( ∀ 𝑦 ( 𝑥 ∈ 𝑦 → ¬ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ 𝑦 → ¬ 𝑦 ∈ 𝐵 ) ) |
7 |
6
|
adantrd |
⊢ ( ∀ 𝑦 ( 𝑥 ∈ 𝑦 → ¬ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → ¬ 𝑦 ∈ 𝐵 ) ) |
8 |
7
|
ancld |
⊢ ( ∀ 𝑦 ( 𝑥 ∈ 𝑦 → ¬ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝐵 ) ) ) |
9 |
|
anass |
⊢ ( ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ) ) |
10 |
8 9
|
syl6ib |
⊢ ( ∀ 𝑦 ( 𝑥 ∈ 𝑦 → ¬ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ) ) ) |
11 |
5 10
|
eximd |
⊢ ( ∀ 𝑦 ( 𝑥 ∈ 𝑦 → ¬ 𝑦 ∈ 𝐵 ) → ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ) ) ) |
12 |
4 11
|
sylbir |
⊢ ( ¬ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ) ) ) |
13 |
12
|
impcom |
⊢ ( ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) → ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ) ) |
14 |
1 3 13
|
syl2anb |
⊢ ( ( 𝑥 ∈ ∪ 𝐴 ∧ ¬ 𝑥 ∈ ∪ 𝐵 ) → ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ) ) |
15 |
|
eldif |
⊢ ( 𝑥 ∈ ( ∪ 𝐴 ∖ ∪ 𝐵 ) ↔ ( 𝑥 ∈ ∪ 𝐴 ∧ ¬ 𝑥 ∈ ∪ 𝐵 ) ) |
16 |
|
eluni |
⊢ ( 𝑥 ∈ ∪ ( 𝐴 ∖ 𝐵 ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) ) ) |
17 |
|
eldif |
⊢ ( 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ) |
18 |
17
|
anbi2i |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ) ) |
19 |
18
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ) ) |
20 |
16 19
|
bitri |
⊢ ( 𝑥 ∈ ∪ ( 𝐴 ∖ 𝐵 ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ) ) |
21 |
14 15 20
|
3imtr4i |
⊢ ( 𝑥 ∈ ( ∪ 𝐴 ∖ ∪ 𝐵 ) → 𝑥 ∈ ∪ ( 𝐴 ∖ 𝐵 ) ) |
22 |
21
|
ssriv |
⊢ ( ∪ 𝐴 ∖ ∪ 𝐵 ) ⊆ ∪ ( 𝐴 ∖ 𝐵 ) |