| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nlpineqsn.x | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | simp1 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋  ∧  𝑝  ∈  𝐴 )  →  𝐽  ∈  Top ) | 
						
							| 3 |  | simp2 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋  ∧  𝑝  ∈  𝐴 )  →  𝐴  ⊆  𝑋 ) | 
						
							| 4 |  | ssel2 | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝑝  ∈  𝐴 )  →  𝑝  ∈  𝑋 ) | 
						
							| 5 | 4 | 3adant1 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋  ∧  𝑝  ∈  𝐴 )  →  𝑝  ∈  𝑋 ) | 
						
							| 6 | 2 3 5 | 3jca | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋  ∧  𝑝  ∈  𝐴 )  →  ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋  ∧  𝑝  ∈  𝑋 ) ) | 
						
							| 7 |  | noel | ⊢ ¬  𝑝  ∈  ∅ | 
						
							| 8 |  | eleq2 | ⊢ ( ( ( limPt ‘ 𝐽 ) ‘ 𝐴 )  =  ∅  →  ( 𝑝  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝐴 )  ↔  𝑝  ∈  ∅ ) ) | 
						
							| 9 | 7 8 | mtbiri | ⊢ ( ( ( limPt ‘ 𝐽 ) ‘ 𝐴 )  =  ∅  →  ¬  𝑝  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋  ∧  𝑝  ∈  𝑋 )  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝐴 )  =  ∅ )  →  ¬  𝑝  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) ) | 
						
							| 11 | 1 | islp3 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋  ∧  𝑝  ∈  𝑋 )  →  ( 𝑝  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝐴 )  ↔  ∀ 𝑛  ∈  𝐽 ( 𝑝  ∈  𝑛  →  ( 𝑛  ∩  ( 𝐴  ∖  { 𝑝 } ) )  ≠  ∅ ) ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋  ∧  𝑝  ∈  𝑋 )  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝐴 )  =  ∅ )  →  ( 𝑝  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝐴 )  ↔  ∀ 𝑛  ∈  𝐽 ( 𝑝  ∈  𝑛  →  ( 𝑛  ∩  ( 𝐴  ∖  { 𝑝 } ) )  ≠  ∅ ) ) ) | 
						
							| 13 | 10 12 | mtbid | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋  ∧  𝑝  ∈  𝑋 )  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝐴 )  =  ∅ )  →  ¬  ∀ 𝑛  ∈  𝐽 ( 𝑝  ∈  𝑛  →  ( 𝑛  ∩  ( 𝐴  ∖  { 𝑝 } ) )  ≠  ∅ ) ) | 
						
							| 14 |  | nne | ⊢ ( ¬  ( 𝑛  ∩  ( 𝐴  ∖  { 𝑝 } ) )  ≠  ∅  ↔  ( 𝑛  ∩  ( 𝐴  ∖  { 𝑝 } ) )  =  ∅ ) | 
						
							| 15 | 14 | anbi2i | ⊢ ( ( 𝑝  ∈  𝑛  ∧  ¬  ( 𝑛  ∩  ( 𝐴  ∖  { 𝑝 } ) )  ≠  ∅ )  ↔  ( 𝑝  ∈  𝑛  ∧  ( 𝑛  ∩  ( 𝐴  ∖  { 𝑝 } ) )  =  ∅ ) ) | 
						
							| 16 |  | annim | ⊢ ( ( 𝑝  ∈  𝑛  ∧  ¬  ( 𝑛  ∩  ( 𝐴  ∖  { 𝑝 } ) )  ≠  ∅ )  ↔  ¬  ( 𝑝  ∈  𝑛  →  ( 𝑛  ∩  ( 𝐴  ∖  { 𝑝 } ) )  ≠  ∅ ) ) | 
						
							| 17 | 15 16 | bitr3i | ⊢ ( ( 𝑝  ∈  𝑛  ∧  ( 𝑛  ∩  ( 𝐴  ∖  { 𝑝 } ) )  =  ∅ )  ↔  ¬  ( 𝑝  ∈  𝑛  →  ( 𝑛  ∩  ( 𝐴  ∖  { 𝑝 } ) )  ≠  ∅ ) ) | 
						
							| 18 | 17 | rexbii | ⊢ ( ∃ 𝑛  ∈  𝐽 ( 𝑝  ∈  𝑛  ∧  ( 𝑛  ∩  ( 𝐴  ∖  { 𝑝 } ) )  =  ∅ )  ↔  ∃ 𝑛  ∈  𝐽 ¬  ( 𝑝  ∈  𝑛  →  ( 𝑛  ∩  ( 𝐴  ∖  { 𝑝 } ) )  ≠  ∅ ) ) | 
						
							| 19 |  | rexnal | ⊢ ( ∃ 𝑛  ∈  𝐽 ¬  ( 𝑝  ∈  𝑛  →  ( 𝑛  ∩  ( 𝐴  ∖  { 𝑝 } ) )  ≠  ∅ )  ↔  ¬  ∀ 𝑛  ∈  𝐽 ( 𝑝  ∈  𝑛  →  ( 𝑛  ∩  ( 𝐴  ∖  { 𝑝 } ) )  ≠  ∅ ) ) | 
						
							| 20 | 18 19 | bitri | ⊢ ( ∃ 𝑛  ∈  𝐽 ( 𝑝  ∈  𝑛  ∧  ( 𝑛  ∩  ( 𝐴  ∖  { 𝑝 } ) )  =  ∅ )  ↔  ¬  ∀ 𝑛  ∈  𝐽 ( 𝑝  ∈  𝑛  →  ( 𝑛  ∩  ( 𝐴  ∖  { 𝑝 } ) )  ≠  ∅ ) ) | 
						
							| 21 | 13 20 | sylibr | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋  ∧  𝑝  ∈  𝑋 )  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝐴 )  =  ∅ )  →  ∃ 𝑛  ∈  𝐽 ( 𝑝  ∈  𝑛  ∧  ( 𝑛  ∩  ( 𝐴  ∖  { 𝑝 } ) )  =  ∅ ) ) | 
						
							| 22 | 6 21 | sylan | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋  ∧  𝑝  ∈  𝐴 )  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝐴 )  =  ∅ )  →  ∃ 𝑛  ∈  𝐽 ( 𝑝  ∈  𝑛  ∧  ( 𝑛  ∩  ( 𝐴  ∖  { 𝑝 } ) )  =  ∅ ) ) | 
						
							| 23 |  | indif2 | ⊢ ( 𝑛  ∩  ( 𝐴  ∖  { 𝑝 } ) )  =  ( ( 𝑛  ∩  𝐴 )  ∖  { 𝑝 } ) | 
						
							| 24 | 23 | eqeq1i | ⊢ ( ( 𝑛  ∩  ( 𝐴  ∖  { 𝑝 } ) )  =  ∅  ↔  ( ( 𝑛  ∩  𝐴 )  ∖  { 𝑝 } )  =  ∅ ) | 
						
							| 25 |  | ssdif0 | ⊢ ( ( 𝑛  ∩  𝐴 )  ⊆  { 𝑝 }  ↔  ( ( 𝑛  ∩  𝐴 )  ∖  { 𝑝 } )  =  ∅ ) | 
						
							| 26 | 24 25 | bitr4i | ⊢ ( ( 𝑛  ∩  ( 𝐴  ∖  { 𝑝 } ) )  =  ∅  ↔  ( 𝑛  ∩  𝐴 )  ⊆  { 𝑝 } ) | 
						
							| 27 |  | elin | ⊢ ( 𝑝  ∈  ( 𝑛  ∩  𝐴 )  ↔  ( 𝑝  ∈  𝑛  ∧  𝑝  ∈  𝐴 ) ) | 
						
							| 28 |  | sssn | ⊢ ( ( 𝑛  ∩  𝐴 )  ⊆  { 𝑝 }  ↔  ( ( 𝑛  ∩  𝐴 )  =  ∅  ∨  ( 𝑛  ∩  𝐴 )  =  { 𝑝 } ) ) | 
						
							| 29 |  | n0i | ⊢ ( 𝑝  ∈  ( 𝑛  ∩  𝐴 )  →  ¬  ( 𝑛  ∩  𝐴 )  =  ∅ ) | 
						
							| 30 |  | biorf | ⊢ ( ¬  ( 𝑛  ∩  𝐴 )  =  ∅  →  ( ( 𝑛  ∩  𝐴 )  =  { 𝑝 }  ↔  ( ( 𝑛  ∩  𝐴 )  =  ∅  ∨  ( 𝑛  ∩  𝐴 )  =  { 𝑝 } ) ) ) | 
						
							| 31 | 29 30 | syl | ⊢ ( 𝑝  ∈  ( 𝑛  ∩  𝐴 )  →  ( ( 𝑛  ∩  𝐴 )  =  { 𝑝 }  ↔  ( ( 𝑛  ∩  𝐴 )  =  ∅  ∨  ( 𝑛  ∩  𝐴 )  =  { 𝑝 } ) ) ) | 
						
							| 32 | 28 31 | bitr4id | ⊢ ( 𝑝  ∈  ( 𝑛  ∩  𝐴 )  →  ( ( 𝑛  ∩  𝐴 )  ⊆  { 𝑝 }  ↔  ( 𝑛  ∩  𝐴 )  =  { 𝑝 } ) ) | 
						
							| 33 | 27 32 | sylbir | ⊢ ( ( 𝑝  ∈  𝑛  ∧  𝑝  ∈  𝐴 )  →  ( ( 𝑛  ∩  𝐴 )  ⊆  { 𝑝 }  ↔  ( 𝑛  ∩  𝐴 )  =  { 𝑝 } ) ) | 
						
							| 34 | 26 33 | bitrid | ⊢ ( ( 𝑝  ∈  𝑛  ∧  𝑝  ∈  𝐴 )  →  ( ( 𝑛  ∩  ( 𝐴  ∖  { 𝑝 } ) )  =  ∅  ↔  ( 𝑛  ∩  𝐴 )  =  { 𝑝 } ) ) | 
						
							| 35 | 34 | ancoms | ⊢ ( ( 𝑝  ∈  𝐴  ∧  𝑝  ∈  𝑛 )  →  ( ( 𝑛  ∩  ( 𝐴  ∖  { 𝑝 } ) )  =  ∅  ↔  ( 𝑛  ∩  𝐴 )  =  { 𝑝 } ) ) | 
						
							| 36 | 35 | pm5.32da | ⊢ ( 𝑝  ∈  𝐴  →  ( ( 𝑝  ∈  𝑛  ∧  ( 𝑛  ∩  ( 𝐴  ∖  { 𝑝 } ) )  =  ∅ )  ↔  ( 𝑝  ∈  𝑛  ∧  ( 𝑛  ∩  𝐴 )  =  { 𝑝 } ) ) ) | 
						
							| 37 | 36 | rexbidv | ⊢ ( 𝑝  ∈  𝐴  →  ( ∃ 𝑛  ∈  𝐽 ( 𝑝  ∈  𝑛  ∧  ( 𝑛  ∩  ( 𝐴  ∖  { 𝑝 } ) )  =  ∅ )  ↔  ∃ 𝑛  ∈  𝐽 ( 𝑝  ∈  𝑛  ∧  ( 𝑛  ∩  𝐴 )  =  { 𝑝 } ) ) ) | 
						
							| 38 | 37 | 3ad2ant3 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋  ∧  𝑝  ∈  𝐴 )  →  ( ∃ 𝑛  ∈  𝐽 ( 𝑝  ∈  𝑛  ∧  ( 𝑛  ∩  ( 𝐴  ∖  { 𝑝 } ) )  =  ∅ )  ↔  ∃ 𝑛  ∈  𝐽 ( 𝑝  ∈  𝑛  ∧  ( 𝑛  ∩  𝐴 )  =  { 𝑝 } ) ) ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋  ∧  𝑝  ∈  𝐴 )  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝐴 )  =  ∅ )  →  ( ∃ 𝑛  ∈  𝐽 ( 𝑝  ∈  𝑛  ∧  ( 𝑛  ∩  ( 𝐴  ∖  { 𝑝 } ) )  =  ∅ )  ↔  ∃ 𝑛  ∈  𝐽 ( 𝑝  ∈  𝑛  ∧  ( 𝑛  ∩  𝐴 )  =  { 𝑝 } ) ) ) | 
						
							| 40 | 22 39 | mpbid | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋  ∧  𝑝  ∈  𝐴 )  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝐴 )  =  ∅ )  →  ∃ 𝑛  ∈  𝐽 ( 𝑝  ∈  𝑛  ∧  ( 𝑛  ∩  𝐴 )  =  { 𝑝 } ) ) | 
						
							| 41 | 40 | 3an1rs | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝐴 )  =  ∅ )  ∧  𝑝  ∈  𝐴 )  →  ∃ 𝑛  ∈  𝐽 ( 𝑝  ∈  𝑛  ∧  ( 𝑛  ∩  𝐴 )  =  { 𝑝 } ) ) | 
						
							| 42 | 41 | ralrimiva | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝐴 )  =  ∅ )  →  ∀ 𝑝  ∈  𝐴 ∃ 𝑛  ∈  𝐽 ( 𝑝  ∈  𝑛  ∧  ( 𝑛  ∩  𝐴 )  =  { 𝑝 } ) ) |