Step |
Hyp |
Ref |
Expression |
1 |
|
nlpineqsn.x |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
simp1 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝐴 ) → 𝐽 ∈ Top ) |
3 |
|
simp2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝐴 ) → 𝐴 ⊆ 𝑋 ) |
4 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝐴 ) → 𝑝 ∈ 𝑋 ) |
5 |
4
|
3adant1 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝐴 ) → 𝑝 ∈ 𝑋 ) |
6 |
2 3 5
|
3jca |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝐴 ) → ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝑋 ) ) |
7 |
|
noel |
⊢ ¬ 𝑝 ∈ ∅ |
8 |
|
eleq2 |
⊢ ( ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) = ∅ → ( 𝑝 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) ↔ 𝑝 ∈ ∅ ) ) |
9 |
7 8
|
mtbiri |
⊢ ( ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) = ∅ → ¬ 𝑝 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝑋 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) = ∅ ) → ¬ 𝑝 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) ) |
11 |
1
|
islp3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝑋 ) → ( 𝑝 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) ↔ ∀ 𝑛 ∈ 𝐽 ( 𝑝 ∈ 𝑛 → ( 𝑛 ∩ ( 𝐴 ∖ { 𝑝 } ) ) ≠ ∅ ) ) ) |
12 |
11
|
adantr |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝑋 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) = ∅ ) → ( 𝑝 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) ↔ ∀ 𝑛 ∈ 𝐽 ( 𝑝 ∈ 𝑛 → ( 𝑛 ∩ ( 𝐴 ∖ { 𝑝 } ) ) ≠ ∅ ) ) ) |
13 |
10 12
|
mtbid |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝑋 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) = ∅ ) → ¬ ∀ 𝑛 ∈ 𝐽 ( 𝑝 ∈ 𝑛 → ( 𝑛 ∩ ( 𝐴 ∖ { 𝑝 } ) ) ≠ ∅ ) ) |
14 |
|
nne |
⊢ ( ¬ ( 𝑛 ∩ ( 𝐴 ∖ { 𝑝 } ) ) ≠ ∅ ↔ ( 𝑛 ∩ ( 𝐴 ∖ { 𝑝 } ) ) = ∅ ) |
15 |
14
|
anbi2i |
⊢ ( ( 𝑝 ∈ 𝑛 ∧ ¬ ( 𝑛 ∩ ( 𝐴 ∖ { 𝑝 } ) ) ≠ ∅ ) ↔ ( 𝑝 ∈ 𝑛 ∧ ( 𝑛 ∩ ( 𝐴 ∖ { 𝑝 } ) ) = ∅ ) ) |
16 |
|
annim |
⊢ ( ( 𝑝 ∈ 𝑛 ∧ ¬ ( 𝑛 ∩ ( 𝐴 ∖ { 𝑝 } ) ) ≠ ∅ ) ↔ ¬ ( 𝑝 ∈ 𝑛 → ( 𝑛 ∩ ( 𝐴 ∖ { 𝑝 } ) ) ≠ ∅ ) ) |
17 |
15 16
|
bitr3i |
⊢ ( ( 𝑝 ∈ 𝑛 ∧ ( 𝑛 ∩ ( 𝐴 ∖ { 𝑝 } ) ) = ∅ ) ↔ ¬ ( 𝑝 ∈ 𝑛 → ( 𝑛 ∩ ( 𝐴 ∖ { 𝑝 } ) ) ≠ ∅ ) ) |
18 |
17
|
rexbii |
⊢ ( ∃ 𝑛 ∈ 𝐽 ( 𝑝 ∈ 𝑛 ∧ ( 𝑛 ∩ ( 𝐴 ∖ { 𝑝 } ) ) = ∅ ) ↔ ∃ 𝑛 ∈ 𝐽 ¬ ( 𝑝 ∈ 𝑛 → ( 𝑛 ∩ ( 𝐴 ∖ { 𝑝 } ) ) ≠ ∅ ) ) |
19 |
|
rexnal |
⊢ ( ∃ 𝑛 ∈ 𝐽 ¬ ( 𝑝 ∈ 𝑛 → ( 𝑛 ∩ ( 𝐴 ∖ { 𝑝 } ) ) ≠ ∅ ) ↔ ¬ ∀ 𝑛 ∈ 𝐽 ( 𝑝 ∈ 𝑛 → ( 𝑛 ∩ ( 𝐴 ∖ { 𝑝 } ) ) ≠ ∅ ) ) |
20 |
18 19
|
bitri |
⊢ ( ∃ 𝑛 ∈ 𝐽 ( 𝑝 ∈ 𝑛 ∧ ( 𝑛 ∩ ( 𝐴 ∖ { 𝑝 } ) ) = ∅ ) ↔ ¬ ∀ 𝑛 ∈ 𝐽 ( 𝑝 ∈ 𝑛 → ( 𝑛 ∩ ( 𝐴 ∖ { 𝑝 } ) ) ≠ ∅ ) ) |
21 |
13 20
|
sylibr |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝑋 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) = ∅ ) → ∃ 𝑛 ∈ 𝐽 ( 𝑝 ∈ 𝑛 ∧ ( 𝑛 ∩ ( 𝐴 ∖ { 𝑝 } ) ) = ∅ ) ) |
22 |
6 21
|
sylan |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) = ∅ ) → ∃ 𝑛 ∈ 𝐽 ( 𝑝 ∈ 𝑛 ∧ ( 𝑛 ∩ ( 𝐴 ∖ { 𝑝 } ) ) = ∅ ) ) |
23 |
|
indif2 |
⊢ ( 𝑛 ∩ ( 𝐴 ∖ { 𝑝 } ) ) = ( ( 𝑛 ∩ 𝐴 ) ∖ { 𝑝 } ) |
24 |
23
|
eqeq1i |
⊢ ( ( 𝑛 ∩ ( 𝐴 ∖ { 𝑝 } ) ) = ∅ ↔ ( ( 𝑛 ∩ 𝐴 ) ∖ { 𝑝 } ) = ∅ ) |
25 |
|
ssdif0 |
⊢ ( ( 𝑛 ∩ 𝐴 ) ⊆ { 𝑝 } ↔ ( ( 𝑛 ∩ 𝐴 ) ∖ { 𝑝 } ) = ∅ ) |
26 |
24 25
|
bitr4i |
⊢ ( ( 𝑛 ∩ ( 𝐴 ∖ { 𝑝 } ) ) = ∅ ↔ ( 𝑛 ∩ 𝐴 ) ⊆ { 𝑝 } ) |
27 |
|
elin |
⊢ ( 𝑝 ∈ ( 𝑛 ∩ 𝐴 ) ↔ ( 𝑝 ∈ 𝑛 ∧ 𝑝 ∈ 𝐴 ) ) |
28 |
|
sssn |
⊢ ( ( 𝑛 ∩ 𝐴 ) ⊆ { 𝑝 } ↔ ( ( 𝑛 ∩ 𝐴 ) = ∅ ∨ ( 𝑛 ∩ 𝐴 ) = { 𝑝 } ) ) |
29 |
|
n0i |
⊢ ( 𝑝 ∈ ( 𝑛 ∩ 𝐴 ) → ¬ ( 𝑛 ∩ 𝐴 ) = ∅ ) |
30 |
|
biorf |
⊢ ( ¬ ( 𝑛 ∩ 𝐴 ) = ∅ → ( ( 𝑛 ∩ 𝐴 ) = { 𝑝 } ↔ ( ( 𝑛 ∩ 𝐴 ) = ∅ ∨ ( 𝑛 ∩ 𝐴 ) = { 𝑝 } ) ) ) |
31 |
29 30
|
syl |
⊢ ( 𝑝 ∈ ( 𝑛 ∩ 𝐴 ) → ( ( 𝑛 ∩ 𝐴 ) = { 𝑝 } ↔ ( ( 𝑛 ∩ 𝐴 ) = ∅ ∨ ( 𝑛 ∩ 𝐴 ) = { 𝑝 } ) ) ) |
32 |
28 31
|
bitr4id |
⊢ ( 𝑝 ∈ ( 𝑛 ∩ 𝐴 ) → ( ( 𝑛 ∩ 𝐴 ) ⊆ { 𝑝 } ↔ ( 𝑛 ∩ 𝐴 ) = { 𝑝 } ) ) |
33 |
27 32
|
sylbir |
⊢ ( ( 𝑝 ∈ 𝑛 ∧ 𝑝 ∈ 𝐴 ) → ( ( 𝑛 ∩ 𝐴 ) ⊆ { 𝑝 } ↔ ( 𝑛 ∩ 𝐴 ) = { 𝑝 } ) ) |
34 |
26 33
|
syl5bb |
⊢ ( ( 𝑝 ∈ 𝑛 ∧ 𝑝 ∈ 𝐴 ) → ( ( 𝑛 ∩ ( 𝐴 ∖ { 𝑝 } ) ) = ∅ ↔ ( 𝑛 ∩ 𝐴 ) = { 𝑝 } ) ) |
35 |
34
|
ancoms |
⊢ ( ( 𝑝 ∈ 𝐴 ∧ 𝑝 ∈ 𝑛 ) → ( ( 𝑛 ∩ ( 𝐴 ∖ { 𝑝 } ) ) = ∅ ↔ ( 𝑛 ∩ 𝐴 ) = { 𝑝 } ) ) |
36 |
35
|
pm5.32da |
⊢ ( 𝑝 ∈ 𝐴 → ( ( 𝑝 ∈ 𝑛 ∧ ( 𝑛 ∩ ( 𝐴 ∖ { 𝑝 } ) ) = ∅ ) ↔ ( 𝑝 ∈ 𝑛 ∧ ( 𝑛 ∩ 𝐴 ) = { 𝑝 } ) ) ) |
37 |
36
|
rexbidv |
⊢ ( 𝑝 ∈ 𝐴 → ( ∃ 𝑛 ∈ 𝐽 ( 𝑝 ∈ 𝑛 ∧ ( 𝑛 ∩ ( 𝐴 ∖ { 𝑝 } ) ) = ∅ ) ↔ ∃ 𝑛 ∈ 𝐽 ( 𝑝 ∈ 𝑛 ∧ ( 𝑛 ∩ 𝐴 ) = { 𝑝 } ) ) ) |
38 |
37
|
3ad2ant3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝐴 ) → ( ∃ 𝑛 ∈ 𝐽 ( 𝑝 ∈ 𝑛 ∧ ( 𝑛 ∩ ( 𝐴 ∖ { 𝑝 } ) ) = ∅ ) ↔ ∃ 𝑛 ∈ 𝐽 ( 𝑝 ∈ 𝑛 ∧ ( 𝑛 ∩ 𝐴 ) = { 𝑝 } ) ) ) |
39 |
38
|
adantr |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) = ∅ ) → ( ∃ 𝑛 ∈ 𝐽 ( 𝑝 ∈ 𝑛 ∧ ( 𝑛 ∩ ( 𝐴 ∖ { 𝑝 } ) ) = ∅ ) ↔ ∃ 𝑛 ∈ 𝐽 ( 𝑝 ∈ 𝑛 ∧ ( 𝑛 ∩ 𝐴 ) = { 𝑝 } ) ) ) |
40 |
22 39
|
mpbid |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) = ∅ ) → ∃ 𝑛 ∈ 𝐽 ( 𝑝 ∈ 𝑛 ∧ ( 𝑛 ∩ 𝐴 ) = { 𝑝 } ) ) |
41 |
40
|
3an1rs |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) = ∅ ) ∧ 𝑝 ∈ 𝐴 ) → ∃ 𝑛 ∈ 𝐽 ( 𝑝 ∈ 𝑛 ∧ ( 𝑛 ∩ 𝐴 ) = { 𝑝 } ) ) |
42 |
41
|
ralrimiva |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) = ∅ ) → ∀ 𝑝 ∈ 𝐴 ∃ 𝑛 ∈ 𝐽 ( 𝑝 ∈ 𝑛 ∧ ( 𝑛 ∩ 𝐴 ) = { 𝑝 } ) ) |