| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nlpineqsn.x | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 | 1 | nlpineqsn | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝐴 )  =  ∅ )  →  ∀ 𝑝  ∈  𝐴 ∃ 𝑛  ∈  𝐽 ( 𝑝  ∈  𝑛  ∧  ( 𝑛  ∩  𝐴 )  =  { 𝑝 } ) ) | 
						
							| 3 |  | simpr | ⊢ ( ( 𝑝  ∈  𝑛  ∧  ( 𝑛  ∩  𝐴 )  =  { 𝑝 } )  →  ( 𝑛  ∩  𝐴 )  =  { 𝑝 } ) | 
						
							| 4 | 3 | reximi | ⊢ ( ∃ 𝑛  ∈  𝐽 ( 𝑝  ∈  𝑛  ∧  ( 𝑛  ∩  𝐴 )  =  { 𝑝 } )  →  ∃ 𝑛  ∈  𝐽 ( 𝑛  ∩  𝐴 )  =  { 𝑝 } ) | 
						
							| 5 | 4 | ralimi | ⊢ ( ∀ 𝑝  ∈  𝐴 ∃ 𝑛  ∈  𝐽 ( 𝑝  ∈  𝑛  ∧  ( 𝑛  ∩  𝐴 )  =  { 𝑝 } )  →  ∀ 𝑝  ∈  𝐴 ∃ 𝑛  ∈  𝐽 ( 𝑛  ∩  𝐴 )  =  { 𝑝 } ) | 
						
							| 6 | 2 5 | syl | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝐴 )  =  ∅ )  →  ∀ 𝑝  ∈  𝐴 ∃ 𝑛  ∈  𝐽 ( 𝑛  ∩  𝐴 )  =  { 𝑝 } ) | 
						
							| 7 |  | ineq1 | ⊢ ( 𝑛  =  ( 𝑓 ‘ 𝑝 )  →  ( 𝑛  ∩  𝐴 )  =  ( ( 𝑓 ‘ 𝑝 )  ∩  𝐴 ) ) | 
						
							| 8 | 7 | eqeq1d | ⊢ ( 𝑛  =  ( 𝑓 ‘ 𝑝 )  →  ( ( 𝑛  ∩  𝐴 )  =  { 𝑝 }  ↔  ( ( 𝑓 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } ) ) | 
						
							| 9 | 8 | ac6sg | ⊢ ( 𝐴  ∈  𝑉  →  ( ∀ 𝑝  ∈  𝐴 ∃ 𝑛  ∈  𝐽 ( 𝑛  ∩  𝐴 )  =  { 𝑝 }  →  ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐽  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝑓 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } ) ) ) | 
						
							| 10 | 6 9 | syl5 | ⊢ ( 𝐴  ∈  𝑉  →  ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝐴 )  =  ∅ )  →  ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐽  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝑓 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } ) ) ) |