Step |
Hyp |
Ref |
Expression |
1 |
|
nlpineqsn.x |
⊢ 𝑋 = ∪ 𝐽 |
2 |
1
|
nlpineqsn |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) = ∅ ) → ∀ 𝑝 ∈ 𝐴 ∃ 𝑛 ∈ 𝐽 ( 𝑝 ∈ 𝑛 ∧ ( 𝑛 ∩ 𝐴 ) = { 𝑝 } ) ) |
3 |
|
simpr |
⊢ ( ( 𝑝 ∈ 𝑛 ∧ ( 𝑛 ∩ 𝐴 ) = { 𝑝 } ) → ( 𝑛 ∩ 𝐴 ) = { 𝑝 } ) |
4 |
3
|
reximi |
⊢ ( ∃ 𝑛 ∈ 𝐽 ( 𝑝 ∈ 𝑛 ∧ ( 𝑛 ∩ 𝐴 ) = { 𝑝 } ) → ∃ 𝑛 ∈ 𝐽 ( 𝑛 ∩ 𝐴 ) = { 𝑝 } ) |
5 |
4
|
ralimi |
⊢ ( ∀ 𝑝 ∈ 𝐴 ∃ 𝑛 ∈ 𝐽 ( 𝑝 ∈ 𝑛 ∧ ( 𝑛 ∩ 𝐴 ) = { 𝑝 } ) → ∀ 𝑝 ∈ 𝐴 ∃ 𝑛 ∈ 𝐽 ( 𝑛 ∩ 𝐴 ) = { 𝑝 } ) |
6 |
2 5
|
syl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) = ∅ ) → ∀ 𝑝 ∈ 𝐴 ∃ 𝑛 ∈ 𝐽 ( 𝑛 ∩ 𝐴 ) = { 𝑝 } ) |
7 |
|
ineq1 |
⊢ ( 𝑛 = ( 𝑓 ‘ 𝑝 ) → ( 𝑛 ∩ 𝐴 ) = ( ( 𝑓 ‘ 𝑝 ) ∩ 𝐴 ) ) |
8 |
7
|
eqeq1d |
⊢ ( 𝑛 = ( 𝑓 ‘ 𝑝 ) → ( ( 𝑛 ∩ 𝐴 ) = { 𝑝 } ↔ ( ( 𝑓 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ) |
9 |
8
|
ac6sg |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑝 ∈ 𝐴 ∃ 𝑛 ∈ 𝐽 ( 𝑛 ∩ 𝐴 ) = { 𝑝 } → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐽 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ) ) |
10 |
6 9
|
syl5 |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) = ∅ ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐽 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝑓 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ) ) |