Metamath Proof Explorer


Theorem nlpfvineqsn

Description: Given a subset A of X with no limit points, there exists a function from each point p of A to an open set intersecting A only at p . This proof uses the axiom of choice. (Contributed by ML, 23-Mar-2021)

Ref Expression
Hypothesis nlpineqsn.x 𝑋 = 𝐽
Assertion nlpfvineqsn ( 𝐴𝑉 → ( ( 𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) = ∅ ) → ∃ 𝑓 ( 𝑓 : 𝐴𝐽 ∧ ∀ 𝑝𝐴 ( ( 𝑓𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ) )

Proof

Step Hyp Ref Expression
1 nlpineqsn.x 𝑋 = 𝐽
2 1 nlpineqsn ( ( 𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) = ∅ ) → ∀ 𝑝𝐴𝑛𝐽 ( 𝑝𝑛 ∧ ( 𝑛𝐴 ) = { 𝑝 } ) )
3 simpr ( ( 𝑝𝑛 ∧ ( 𝑛𝐴 ) = { 𝑝 } ) → ( 𝑛𝐴 ) = { 𝑝 } )
4 3 reximi ( ∃ 𝑛𝐽 ( 𝑝𝑛 ∧ ( 𝑛𝐴 ) = { 𝑝 } ) → ∃ 𝑛𝐽 ( 𝑛𝐴 ) = { 𝑝 } )
5 4 ralimi ( ∀ 𝑝𝐴𝑛𝐽 ( 𝑝𝑛 ∧ ( 𝑛𝐴 ) = { 𝑝 } ) → ∀ 𝑝𝐴𝑛𝐽 ( 𝑛𝐴 ) = { 𝑝 } )
6 2 5 syl ( ( 𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) = ∅ ) → ∀ 𝑝𝐴𝑛𝐽 ( 𝑛𝐴 ) = { 𝑝 } )
7 ineq1 ( 𝑛 = ( 𝑓𝑝 ) → ( 𝑛𝐴 ) = ( ( 𝑓𝑝 ) ∩ 𝐴 ) )
8 7 eqeq1d ( 𝑛 = ( 𝑓𝑝 ) → ( ( 𝑛𝐴 ) = { 𝑝 } ↔ ( ( 𝑓𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) )
9 8 ac6sg ( 𝐴𝑉 → ( ∀ 𝑝𝐴𝑛𝐽 ( 𝑛𝐴 ) = { 𝑝 } → ∃ 𝑓 ( 𝑓 : 𝐴𝐽 ∧ ∀ 𝑝𝐴 ( ( 𝑓𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ) )
10 6 9 syl5 ( 𝐴𝑉 → ( ( 𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝐴 ) = ∅ ) → ∃ 𝑓 ( 𝑓 : 𝐴𝐽 ∧ ∀ 𝑝𝐴 ( ( 𝑓𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ) )