Metamath Proof Explorer


Theorem nlpfvineqsn

Description: Given a subset A of X with no limit points, there exists a function from each point p of A to an open set intersecting A only at p . This proof uses the axiom of choice. (Contributed by ML, 23-Mar-2021)

Ref Expression
Hypothesis nlpineqsn.x
|- X = U. J
Assertion nlpfvineqsn
|- ( A e. V -> ( ( J e. Top /\ A C_ X /\ ( ( limPt ` J ) ` A ) = (/) ) -> E. f ( f : A --> J /\ A. p e. A ( ( f ` p ) i^i A ) = { p } ) ) )

Proof

Step Hyp Ref Expression
1 nlpineqsn.x
 |-  X = U. J
2 1 nlpineqsn
 |-  ( ( J e. Top /\ A C_ X /\ ( ( limPt ` J ) ` A ) = (/) ) -> A. p e. A E. n e. J ( p e. n /\ ( n i^i A ) = { p } ) )
3 simpr
 |-  ( ( p e. n /\ ( n i^i A ) = { p } ) -> ( n i^i A ) = { p } )
4 3 reximi
 |-  ( E. n e. J ( p e. n /\ ( n i^i A ) = { p } ) -> E. n e. J ( n i^i A ) = { p } )
5 4 ralimi
 |-  ( A. p e. A E. n e. J ( p e. n /\ ( n i^i A ) = { p } ) -> A. p e. A E. n e. J ( n i^i A ) = { p } )
6 2 5 syl
 |-  ( ( J e. Top /\ A C_ X /\ ( ( limPt ` J ) ` A ) = (/) ) -> A. p e. A E. n e. J ( n i^i A ) = { p } )
7 ineq1
 |-  ( n = ( f ` p ) -> ( n i^i A ) = ( ( f ` p ) i^i A ) )
8 7 eqeq1d
 |-  ( n = ( f ` p ) -> ( ( n i^i A ) = { p } <-> ( ( f ` p ) i^i A ) = { p } ) )
9 8 ac6sg
 |-  ( A e. V -> ( A. p e. A E. n e. J ( n i^i A ) = { p } -> E. f ( f : A --> J /\ A. p e. A ( ( f ` p ) i^i A ) = { p } ) ) )
10 6 9 syl5
 |-  ( A e. V -> ( ( J e. Top /\ A C_ X /\ ( ( limPt ` J ) ` A ) = (/) ) -> E. f ( f : A --> J /\ A. p e. A ( ( f ` p ) i^i A ) = { p } ) ) )