Step |
Hyp |
Ref |
Expression |
1 |
|
nlpineqsn.x |
|- X = U. J |
2 |
|
simp1 |
|- ( ( J e. Top /\ A C_ X /\ p e. A ) -> J e. Top ) |
3 |
|
simp2 |
|- ( ( J e. Top /\ A C_ X /\ p e. A ) -> A C_ X ) |
4 |
|
ssel2 |
|- ( ( A C_ X /\ p e. A ) -> p e. X ) |
5 |
4
|
3adant1 |
|- ( ( J e. Top /\ A C_ X /\ p e. A ) -> p e. X ) |
6 |
2 3 5
|
3jca |
|- ( ( J e. Top /\ A C_ X /\ p e. A ) -> ( J e. Top /\ A C_ X /\ p e. X ) ) |
7 |
|
noel |
|- -. p e. (/) |
8 |
|
eleq2 |
|- ( ( ( limPt ` J ) ` A ) = (/) -> ( p e. ( ( limPt ` J ) ` A ) <-> p e. (/) ) ) |
9 |
7 8
|
mtbiri |
|- ( ( ( limPt ` J ) ` A ) = (/) -> -. p e. ( ( limPt ` J ) ` A ) ) |
10 |
9
|
adantl |
|- ( ( ( J e. Top /\ A C_ X /\ p e. X ) /\ ( ( limPt ` J ) ` A ) = (/) ) -> -. p e. ( ( limPt ` J ) ` A ) ) |
11 |
1
|
islp3 |
|- ( ( J e. Top /\ A C_ X /\ p e. X ) -> ( p e. ( ( limPt ` J ) ` A ) <-> A. n e. J ( p e. n -> ( n i^i ( A \ { p } ) ) =/= (/) ) ) ) |
12 |
11
|
adantr |
|- ( ( ( J e. Top /\ A C_ X /\ p e. X ) /\ ( ( limPt ` J ) ` A ) = (/) ) -> ( p e. ( ( limPt ` J ) ` A ) <-> A. n e. J ( p e. n -> ( n i^i ( A \ { p } ) ) =/= (/) ) ) ) |
13 |
10 12
|
mtbid |
|- ( ( ( J e. Top /\ A C_ X /\ p e. X ) /\ ( ( limPt ` J ) ` A ) = (/) ) -> -. A. n e. J ( p e. n -> ( n i^i ( A \ { p } ) ) =/= (/) ) ) |
14 |
|
nne |
|- ( -. ( n i^i ( A \ { p } ) ) =/= (/) <-> ( n i^i ( A \ { p } ) ) = (/) ) |
15 |
14
|
anbi2i |
|- ( ( p e. n /\ -. ( n i^i ( A \ { p } ) ) =/= (/) ) <-> ( p e. n /\ ( n i^i ( A \ { p } ) ) = (/) ) ) |
16 |
|
annim |
|- ( ( p e. n /\ -. ( n i^i ( A \ { p } ) ) =/= (/) ) <-> -. ( p e. n -> ( n i^i ( A \ { p } ) ) =/= (/) ) ) |
17 |
15 16
|
bitr3i |
|- ( ( p e. n /\ ( n i^i ( A \ { p } ) ) = (/) ) <-> -. ( p e. n -> ( n i^i ( A \ { p } ) ) =/= (/) ) ) |
18 |
17
|
rexbii |
|- ( E. n e. J ( p e. n /\ ( n i^i ( A \ { p } ) ) = (/) ) <-> E. n e. J -. ( p e. n -> ( n i^i ( A \ { p } ) ) =/= (/) ) ) |
19 |
|
rexnal |
|- ( E. n e. J -. ( p e. n -> ( n i^i ( A \ { p } ) ) =/= (/) ) <-> -. A. n e. J ( p e. n -> ( n i^i ( A \ { p } ) ) =/= (/) ) ) |
20 |
18 19
|
bitri |
|- ( E. n e. J ( p e. n /\ ( n i^i ( A \ { p } ) ) = (/) ) <-> -. A. n e. J ( p e. n -> ( n i^i ( A \ { p } ) ) =/= (/) ) ) |
21 |
13 20
|
sylibr |
|- ( ( ( J e. Top /\ A C_ X /\ p e. X ) /\ ( ( limPt ` J ) ` A ) = (/) ) -> E. n e. J ( p e. n /\ ( n i^i ( A \ { p } ) ) = (/) ) ) |
22 |
6 21
|
sylan |
|- ( ( ( J e. Top /\ A C_ X /\ p e. A ) /\ ( ( limPt ` J ) ` A ) = (/) ) -> E. n e. J ( p e. n /\ ( n i^i ( A \ { p } ) ) = (/) ) ) |
23 |
|
indif2 |
|- ( n i^i ( A \ { p } ) ) = ( ( n i^i A ) \ { p } ) |
24 |
23
|
eqeq1i |
|- ( ( n i^i ( A \ { p } ) ) = (/) <-> ( ( n i^i A ) \ { p } ) = (/) ) |
25 |
|
ssdif0 |
|- ( ( n i^i A ) C_ { p } <-> ( ( n i^i A ) \ { p } ) = (/) ) |
26 |
24 25
|
bitr4i |
|- ( ( n i^i ( A \ { p } ) ) = (/) <-> ( n i^i A ) C_ { p } ) |
27 |
|
elin |
|- ( p e. ( n i^i A ) <-> ( p e. n /\ p e. A ) ) |
28 |
|
sssn |
|- ( ( n i^i A ) C_ { p } <-> ( ( n i^i A ) = (/) \/ ( n i^i A ) = { p } ) ) |
29 |
|
n0i |
|- ( p e. ( n i^i A ) -> -. ( n i^i A ) = (/) ) |
30 |
|
biorf |
|- ( -. ( n i^i A ) = (/) -> ( ( n i^i A ) = { p } <-> ( ( n i^i A ) = (/) \/ ( n i^i A ) = { p } ) ) ) |
31 |
29 30
|
syl |
|- ( p e. ( n i^i A ) -> ( ( n i^i A ) = { p } <-> ( ( n i^i A ) = (/) \/ ( n i^i A ) = { p } ) ) ) |
32 |
28 31
|
bitr4id |
|- ( p e. ( n i^i A ) -> ( ( n i^i A ) C_ { p } <-> ( n i^i A ) = { p } ) ) |
33 |
27 32
|
sylbir |
|- ( ( p e. n /\ p e. A ) -> ( ( n i^i A ) C_ { p } <-> ( n i^i A ) = { p } ) ) |
34 |
26 33
|
syl5bb |
|- ( ( p e. n /\ p e. A ) -> ( ( n i^i ( A \ { p } ) ) = (/) <-> ( n i^i A ) = { p } ) ) |
35 |
34
|
ancoms |
|- ( ( p e. A /\ p e. n ) -> ( ( n i^i ( A \ { p } ) ) = (/) <-> ( n i^i A ) = { p } ) ) |
36 |
35
|
pm5.32da |
|- ( p e. A -> ( ( p e. n /\ ( n i^i ( A \ { p } ) ) = (/) ) <-> ( p e. n /\ ( n i^i A ) = { p } ) ) ) |
37 |
36
|
rexbidv |
|- ( p e. A -> ( E. n e. J ( p e. n /\ ( n i^i ( A \ { p } ) ) = (/) ) <-> E. n e. J ( p e. n /\ ( n i^i A ) = { p } ) ) ) |
38 |
37
|
3ad2ant3 |
|- ( ( J e. Top /\ A C_ X /\ p e. A ) -> ( E. n e. J ( p e. n /\ ( n i^i ( A \ { p } ) ) = (/) ) <-> E. n e. J ( p e. n /\ ( n i^i A ) = { p } ) ) ) |
39 |
38
|
adantr |
|- ( ( ( J e. Top /\ A C_ X /\ p e. A ) /\ ( ( limPt ` J ) ` A ) = (/) ) -> ( E. n e. J ( p e. n /\ ( n i^i ( A \ { p } ) ) = (/) ) <-> E. n e. J ( p e. n /\ ( n i^i A ) = { p } ) ) ) |
40 |
22 39
|
mpbid |
|- ( ( ( J e. Top /\ A C_ X /\ p e. A ) /\ ( ( limPt ` J ) ` A ) = (/) ) -> E. n e. J ( p e. n /\ ( n i^i A ) = { p } ) ) |
41 |
40
|
3an1rs |
|- ( ( ( J e. Top /\ A C_ X /\ ( ( limPt ` J ) ` A ) = (/) ) /\ p e. A ) -> E. n e. J ( p e. n /\ ( n i^i A ) = { p } ) ) |
42 |
41
|
ralrimiva |
|- ( ( J e. Top /\ A C_ X /\ ( ( limPt ` J ) ` A ) = (/) ) -> A. p e. A E. n e. J ( p e. n /\ ( n i^i A ) = { p } ) ) |