| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nlpineqsn.x |  |-  X = U. J | 
						
							| 2 |  | simp1 |  |-  ( ( J e. Top /\ A C_ X /\ p e. A ) -> J e. Top ) | 
						
							| 3 |  | simp2 |  |-  ( ( J e. Top /\ A C_ X /\ p e. A ) -> A C_ X ) | 
						
							| 4 |  | ssel2 |  |-  ( ( A C_ X /\ p e. A ) -> p e. X ) | 
						
							| 5 | 4 | 3adant1 |  |-  ( ( J e. Top /\ A C_ X /\ p e. A ) -> p e. X ) | 
						
							| 6 | 2 3 5 | 3jca |  |-  ( ( J e. Top /\ A C_ X /\ p e. A ) -> ( J e. Top /\ A C_ X /\ p e. X ) ) | 
						
							| 7 |  | noel |  |-  -. p e. (/) | 
						
							| 8 |  | eleq2 |  |-  ( ( ( limPt ` J ) ` A ) = (/) -> ( p e. ( ( limPt ` J ) ` A ) <-> p e. (/) ) ) | 
						
							| 9 | 7 8 | mtbiri |  |-  ( ( ( limPt ` J ) ` A ) = (/) -> -. p e. ( ( limPt ` J ) ` A ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ( J e. Top /\ A C_ X /\ p e. X ) /\ ( ( limPt ` J ) ` A ) = (/) ) -> -. p e. ( ( limPt ` J ) ` A ) ) | 
						
							| 11 | 1 | islp3 |  |-  ( ( J e. Top /\ A C_ X /\ p e. X ) -> ( p e. ( ( limPt ` J ) ` A ) <-> A. n e. J ( p e. n -> ( n i^i ( A \ { p } ) ) =/= (/) ) ) ) | 
						
							| 12 | 11 | adantr |  |-  ( ( ( J e. Top /\ A C_ X /\ p e. X ) /\ ( ( limPt ` J ) ` A ) = (/) ) -> ( p e. ( ( limPt ` J ) ` A ) <-> A. n e. J ( p e. n -> ( n i^i ( A \ { p } ) ) =/= (/) ) ) ) | 
						
							| 13 | 10 12 | mtbid |  |-  ( ( ( J e. Top /\ A C_ X /\ p e. X ) /\ ( ( limPt ` J ) ` A ) = (/) ) -> -. A. n e. J ( p e. n -> ( n i^i ( A \ { p } ) ) =/= (/) ) ) | 
						
							| 14 |  | nne |  |-  ( -. ( n i^i ( A \ { p } ) ) =/= (/) <-> ( n i^i ( A \ { p } ) ) = (/) ) | 
						
							| 15 | 14 | anbi2i |  |-  ( ( p e. n /\ -. ( n i^i ( A \ { p } ) ) =/= (/) ) <-> ( p e. n /\ ( n i^i ( A \ { p } ) ) = (/) ) ) | 
						
							| 16 |  | annim |  |-  ( ( p e. n /\ -. ( n i^i ( A \ { p } ) ) =/= (/) ) <-> -. ( p e. n -> ( n i^i ( A \ { p } ) ) =/= (/) ) ) | 
						
							| 17 | 15 16 | bitr3i |  |-  ( ( p e. n /\ ( n i^i ( A \ { p } ) ) = (/) ) <-> -. ( p e. n -> ( n i^i ( A \ { p } ) ) =/= (/) ) ) | 
						
							| 18 | 17 | rexbii |  |-  ( E. n e. J ( p e. n /\ ( n i^i ( A \ { p } ) ) = (/) ) <-> E. n e. J -. ( p e. n -> ( n i^i ( A \ { p } ) ) =/= (/) ) ) | 
						
							| 19 |  | rexnal |  |-  ( E. n e. J -. ( p e. n -> ( n i^i ( A \ { p } ) ) =/= (/) ) <-> -. A. n e. J ( p e. n -> ( n i^i ( A \ { p } ) ) =/= (/) ) ) | 
						
							| 20 | 18 19 | bitri |  |-  ( E. n e. J ( p e. n /\ ( n i^i ( A \ { p } ) ) = (/) ) <-> -. A. n e. J ( p e. n -> ( n i^i ( A \ { p } ) ) =/= (/) ) ) | 
						
							| 21 | 13 20 | sylibr |  |-  ( ( ( J e. Top /\ A C_ X /\ p e. X ) /\ ( ( limPt ` J ) ` A ) = (/) ) -> E. n e. J ( p e. n /\ ( n i^i ( A \ { p } ) ) = (/) ) ) | 
						
							| 22 | 6 21 | sylan |  |-  ( ( ( J e. Top /\ A C_ X /\ p e. A ) /\ ( ( limPt ` J ) ` A ) = (/) ) -> E. n e. J ( p e. n /\ ( n i^i ( A \ { p } ) ) = (/) ) ) | 
						
							| 23 |  | indif2 |  |-  ( n i^i ( A \ { p } ) ) = ( ( n i^i A ) \ { p } ) | 
						
							| 24 | 23 | eqeq1i |  |-  ( ( n i^i ( A \ { p } ) ) = (/) <-> ( ( n i^i A ) \ { p } ) = (/) ) | 
						
							| 25 |  | ssdif0 |  |-  ( ( n i^i A ) C_ { p } <-> ( ( n i^i A ) \ { p } ) = (/) ) | 
						
							| 26 | 24 25 | bitr4i |  |-  ( ( n i^i ( A \ { p } ) ) = (/) <-> ( n i^i A ) C_ { p } ) | 
						
							| 27 |  | elin |  |-  ( p e. ( n i^i A ) <-> ( p e. n /\ p e. A ) ) | 
						
							| 28 |  | sssn |  |-  ( ( n i^i A ) C_ { p } <-> ( ( n i^i A ) = (/) \/ ( n i^i A ) = { p } ) ) | 
						
							| 29 |  | n0i |  |-  ( p e. ( n i^i A ) -> -. ( n i^i A ) = (/) ) | 
						
							| 30 |  | biorf |  |-  ( -. ( n i^i A ) = (/) -> ( ( n i^i A ) = { p } <-> ( ( n i^i A ) = (/) \/ ( n i^i A ) = { p } ) ) ) | 
						
							| 31 | 29 30 | syl |  |-  ( p e. ( n i^i A ) -> ( ( n i^i A ) = { p } <-> ( ( n i^i A ) = (/) \/ ( n i^i A ) = { p } ) ) ) | 
						
							| 32 | 28 31 | bitr4id |  |-  ( p e. ( n i^i A ) -> ( ( n i^i A ) C_ { p } <-> ( n i^i A ) = { p } ) ) | 
						
							| 33 | 27 32 | sylbir |  |-  ( ( p e. n /\ p e. A ) -> ( ( n i^i A ) C_ { p } <-> ( n i^i A ) = { p } ) ) | 
						
							| 34 | 26 33 | bitrid |  |-  ( ( p e. n /\ p e. A ) -> ( ( n i^i ( A \ { p } ) ) = (/) <-> ( n i^i A ) = { p } ) ) | 
						
							| 35 | 34 | ancoms |  |-  ( ( p e. A /\ p e. n ) -> ( ( n i^i ( A \ { p } ) ) = (/) <-> ( n i^i A ) = { p } ) ) | 
						
							| 36 | 35 | pm5.32da |  |-  ( p e. A -> ( ( p e. n /\ ( n i^i ( A \ { p } ) ) = (/) ) <-> ( p e. n /\ ( n i^i A ) = { p } ) ) ) | 
						
							| 37 | 36 | rexbidv |  |-  ( p e. A -> ( E. n e. J ( p e. n /\ ( n i^i ( A \ { p } ) ) = (/) ) <-> E. n e. J ( p e. n /\ ( n i^i A ) = { p } ) ) ) | 
						
							| 38 | 37 | 3ad2ant3 |  |-  ( ( J e. Top /\ A C_ X /\ p e. A ) -> ( E. n e. J ( p e. n /\ ( n i^i ( A \ { p } ) ) = (/) ) <-> E. n e. J ( p e. n /\ ( n i^i A ) = { p } ) ) ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ( J e. Top /\ A C_ X /\ p e. A ) /\ ( ( limPt ` J ) ` A ) = (/) ) -> ( E. n e. J ( p e. n /\ ( n i^i ( A \ { p } ) ) = (/) ) <-> E. n e. J ( p e. n /\ ( n i^i A ) = { p } ) ) ) | 
						
							| 40 | 22 39 | mpbid |  |-  ( ( ( J e. Top /\ A C_ X /\ p e. A ) /\ ( ( limPt ` J ) ` A ) = (/) ) -> E. n e. J ( p e. n /\ ( n i^i A ) = { p } ) ) | 
						
							| 41 | 40 | 3an1rs |  |-  ( ( ( J e. Top /\ A C_ X /\ ( ( limPt ` J ) ` A ) = (/) ) /\ p e. A ) -> E. n e. J ( p e. n /\ ( n i^i A ) = { p } ) ) | 
						
							| 42 | 41 | ralrimiva |  |-  ( ( J e. Top /\ A C_ X /\ ( ( limPt ` J ) ` A ) = (/) ) -> A. p e. A E. n e. J ( p e. n /\ ( n i^i A ) = { p } ) ) |