| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 | ⊢ ( 𝑝  =  𝑞  →  ( 𝐹 ‘ 𝑝 )  =  ( 𝐹 ‘ 𝑞 ) ) | 
						
							| 2 | 1 | ineq1d | ⊢ ( 𝑝  =  𝑞  →  ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  ( ( 𝐹 ‘ 𝑞 )  ∩  𝐴 ) ) | 
						
							| 3 |  | sneq | ⊢ ( 𝑝  =  𝑞  →  { 𝑝 }  =  { 𝑞 } ) | 
						
							| 4 | 2 3 | eqeq12d | ⊢ ( 𝑝  =  𝑞  →  ( ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  ↔  ( ( 𝐹 ‘ 𝑞 )  ∩  𝐴 )  =  { 𝑞 } ) ) | 
						
							| 5 | 4 | cbvralvw | ⊢ ( ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  ↔  ∀ 𝑞  ∈  𝐴 ( ( 𝐹 ‘ 𝑞 )  ∩  𝐴 )  =  { 𝑞 } ) | 
						
							| 6 | 5 | biimpi | ⊢ ( ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  →  ∀ 𝑞  ∈  𝐴 ( ( 𝐹 ‘ 𝑞 )  ∩  𝐴 )  =  { 𝑞 } ) | 
						
							| 7 |  | ax-5 | ⊢ ( ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  →  ∀ 𝑞 ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } ) | 
						
							| 8 |  | alral | ⊢ ( ∀ 𝑞 ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  →  ∀ 𝑞  ∈  𝐴 ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } ) | 
						
							| 9 |  | ralcom | ⊢ ( ∀ 𝑞  ∈  𝐴 ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  ↔  ∀ 𝑝  ∈  𝐴 ∀ 𝑞  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } ) | 
						
							| 10 | 9 | biimpi | ⊢ ( ∀ 𝑞  ∈  𝐴 ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  →  ∀ 𝑝  ∈  𝐴 ∀ 𝑞  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } ) | 
						
							| 11 | 7 8 10 | 3syl | ⊢ ( ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  →  ∀ 𝑝  ∈  𝐴 ∀ 𝑞  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } ) | 
						
							| 12 |  | ax-5 | ⊢ ( ∀ 𝑞  ∈  𝐴 ( ( 𝐹 ‘ 𝑞 )  ∩  𝐴 )  =  { 𝑞 }  →  ∀ 𝑝 ∀ 𝑞  ∈  𝐴 ( ( 𝐹 ‘ 𝑞 )  ∩  𝐴 )  =  { 𝑞 } ) | 
						
							| 13 |  | alral | ⊢ ( ∀ 𝑝 ∀ 𝑞  ∈  𝐴 ( ( 𝐹 ‘ 𝑞 )  ∩  𝐴 )  =  { 𝑞 }  →  ∀ 𝑝  ∈  𝐴 ∀ 𝑞  ∈  𝐴 ( ( 𝐹 ‘ 𝑞 )  ∩  𝐴 )  =  { 𝑞 } ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ∀ 𝑞  ∈  𝐴 ( ( 𝐹 ‘ 𝑞 )  ∩  𝐴 )  =  { 𝑞 }  →  ∀ 𝑝  ∈  𝐴 ∀ 𝑞  ∈  𝐴 ( ( 𝐹 ‘ 𝑞 )  ∩  𝐴 )  =  { 𝑞 } ) | 
						
							| 15 | 11 14 | anim12i | ⊢ ( ( ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  ∧  ∀ 𝑞  ∈  𝐴 ( ( 𝐹 ‘ 𝑞 )  ∩  𝐴 )  =  { 𝑞 } )  →  ( ∀ 𝑝  ∈  𝐴 ∀ 𝑞  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  ∧  ∀ 𝑝  ∈  𝐴 ∀ 𝑞  ∈  𝐴 ( ( 𝐹 ‘ 𝑞 )  ∩  𝐴 )  =  { 𝑞 } ) ) | 
						
							| 16 | 6 15 | mpdan | ⊢ ( ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  →  ( ∀ 𝑝  ∈  𝐴 ∀ 𝑞  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  ∧  ∀ 𝑝  ∈  𝐴 ∀ 𝑞  ∈  𝐴 ( ( 𝐹 ‘ 𝑞 )  ∩  𝐴 )  =  { 𝑞 } ) ) | 
						
							| 17 |  | r19.26-2 | ⊢ ( ∀ 𝑝  ∈  𝐴 ∀ 𝑞  ∈  𝐴 ( ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  ∧  ( ( 𝐹 ‘ 𝑞 )  ∩  𝐴 )  =  { 𝑞 } )  ↔  ( ∀ 𝑝  ∈  𝐴 ∀ 𝑞  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  ∧  ∀ 𝑝  ∈  𝐴 ∀ 𝑞  ∈  𝐴 ( ( 𝐹 ‘ 𝑞 )  ∩  𝐴 )  =  { 𝑞 } ) ) | 
						
							| 18 | 16 17 | sylibr | ⊢ ( ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  →  ∀ 𝑝  ∈  𝐴 ∀ 𝑞  ∈  𝐴 ( ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  ∧  ( ( 𝐹 ‘ 𝑞 )  ∩  𝐴 )  =  { 𝑞 } ) ) | 
						
							| 19 |  | ineq1 | ⊢ ( ( 𝐹 ‘ 𝑝 )  =  ( 𝐹 ‘ 𝑞 )  →  ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  ( ( 𝐹 ‘ 𝑞 )  ∩  𝐴 ) ) | 
						
							| 20 |  | eqeq1 | ⊢ ( ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  →  ( ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  ( ( 𝐹 ‘ 𝑞 )  ∩  𝐴 )  ↔  { 𝑝 }  =  ( ( 𝐹 ‘ 𝑞 )  ∩  𝐴 ) ) ) | 
						
							| 21 |  | eqcom | ⊢ ( { 𝑝 }  =  ( ( 𝐹 ‘ 𝑞 )  ∩  𝐴 )  ↔  ( ( 𝐹 ‘ 𝑞 )  ∩  𝐴 )  =  { 𝑝 } ) | 
						
							| 22 | 20 21 | bitrdi | ⊢ ( ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  →  ( ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  ( ( 𝐹 ‘ 𝑞 )  ∩  𝐴 )  ↔  ( ( 𝐹 ‘ 𝑞 )  ∩  𝐴 )  =  { 𝑝 } ) ) | 
						
							| 23 |  | eqeq1 | ⊢ ( ( ( 𝐹 ‘ 𝑞 )  ∩  𝐴 )  =  { 𝑞 }  →  ( ( ( 𝐹 ‘ 𝑞 )  ∩  𝐴 )  =  { 𝑝 }  ↔  { 𝑞 }  =  { 𝑝 } ) ) | 
						
							| 24 |  | eqcom | ⊢ ( { 𝑞 }  =  { 𝑝 }  ↔  { 𝑝 }  =  { 𝑞 } ) | 
						
							| 25 |  | vex | ⊢ 𝑝  ∈  V | 
						
							| 26 |  | sneqbg | ⊢ ( 𝑝  ∈  V  →  ( { 𝑝 }  =  { 𝑞 }  ↔  𝑝  =  𝑞 ) ) | 
						
							| 27 | 25 26 | ax-mp | ⊢ ( { 𝑝 }  =  { 𝑞 }  ↔  𝑝  =  𝑞 ) | 
						
							| 28 | 24 27 | bitri | ⊢ ( { 𝑞 }  =  { 𝑝 }  ↔  𝑝  =  𝑞 ) | 
						
							| 29 | 23 28 | bitrdi | ⊢ ( ( ( 𝐹 ‘ 𝑞 )  ∩  𝐴 )  =  { 𝑞 }  →  ( ( ( 𝐹 ‘ 𝑞 )  ∩  𝐴 )  =  { 𝑝 }  ↔  𝑝  =  𝑞 ) ) | 
						
							| 30 | 22 29 | sylan9bb | ⊢ ( ( ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  ∧  ( ( 𝐹 ‘ 𝑞 )  ∩  𝐴 )  =  { 𝑞 } )  →  ( ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  ( ( 𝐹 ‘ 𝑞 )  ∩  𝐴 )  ↔  𝑝  =  𝑞 ) ) | 
						
							| 31 | 19 30 | imbitrid | ⊢ ( ( ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  ∧  ( ( 𝐹 ‘ 𝑞 )  ∩  𝐴 )  =  { 𝑞 } )  →  ( ( 𝐹 ‘ 𝑝 )  =  ( 𝐹 ‘ 𝑞 )  →  𝑝  =  𝑞 ) ) | 
						
							| 32 | 31 | ralimi | ⊢ ( ∀ 𝑞  ∈  𝐴 ( ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  ∧  ( ( 𝐹 ‘ 𝑞 )  ∩  𝐴 )  =  { 𝑞 } )  →  ∀ 𝑞  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  =  ( 𝐹 ‘ 𝑞 )  →  𝑝  =  𝑞 ) ) | 
						
							| 33 | 32 | ralimi | ⊢ ( ∀ 𝑝  ∈  𝐴 ∀ 𝑞  ∈  𝐴 ( ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  ∧  ( ( 𝐹 ‘ 𝑞 )  ∩  𝐴 )  =  { 𝑞 } )  →  ∀ 𝑝  ∈  𝐴 ∀ 𝑞  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  =  ( 𝐹 ‘ 𝑞 )  →  𝑝  =  𝑞 ) ) | 
						
							| 34 | 18 33 | syl | ⊢ ( ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  →  ∀ 𝑝  ∈  𝐴 ∀ 𝑞  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  =  ( 𝐹 ‘ 𝑞 )  →  𝑝  =  𝑞 ) ) | 
						
							| 35 | 34 | anim2i | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐽  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  →  ( 𝐹 : 𝐴 ⟶ 𝐽  ∧  ∀ 𝑝  ∈  𝐴 ∀ 𝑞  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  =  ( 𝐹 ‘ 𝑞 )  →  𝑝  =  𝑞 ) ) ) | 
						
							| 36 |  | dff13 | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐽  ↔  ( 𝐹 : 𝐴 ⟶ 𝐽  ∧  ∀ 𝑝  ∈  𝐴 ∀ 𝑞  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  =  ( 𝐹 ‘ 𝑞 )  →  𝑝  =  𝑞 ) ) ) | 
						
							| 37 | 35 36 | sylibr | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐽  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  →  𝐹 : 𝐴 –1-1→ 𝐽 ) |