Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝑝 = 𝑞 → ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ) |
2 |
1
|
ineq1d |
⊢ ( 𝑝 = 𝑞 → ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = ( ( 𝐹 ‘ 𝑞 ) ∩ 𝐴 ) ) |
3 |
|
sneq |
⊢ ( 𝑝 = 𝑞 → { 𝑝 } = { 𝑞 } ) |
4 |
2 3
|
eqeq12d |
⊢ ( 𝑝 = 𝑞 → ( ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ↔ ( ( 𝐹 ‘ 𝑞 ) ∩ 𝐴 ) = { 𝑞 } ) ) |
5 |
4
|
cbvralvw |
⊢ ( ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ↔ ∀ 𝑞 ∈ 𝐴 ( ( 𝐹 ‘ 𝑞 ) ∩ 𝐴 ) = { 𝑞 } ) |
6 |
5
|
biimpi |
⊢ ( ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ∀ 𝑞 ∈ 𝐴 ( ( 𝐹 ‘ 𝑞 ) ∩ 𝐴 ) = { 𝑞 } ) |
7 |
|
ax-5 |
⊢ ( ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ∀ 𝑞 ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) |
8 |
|
alral |
⊢ ( ∀ 𝑞 ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ∀ 𝑞 ∈ 𝐴 ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) |
9 |
|
ralcom |
⊢ ( ∀ 𝑞 ∈ 𝐴 ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ↔ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) |
10 |
9
|
biimpi |
⊢ ( ∀ 𝑞 ∈ 𝐴 ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) |
11 |
7 8 10
|
3syl |
⊢ ( ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) |
12 |
|
ax-5 |
⊢ ( ∀ 𝑞 ∈ 𝐴 ( ( 𝐹 ‘ 𝑞 ) ∩ 𝐴 ) = { 𝑞 } → ∀ 𝑝 ∀ 𝑞 ∈ 𝐴 ( ( 𝐹 ‘ 𝑞 ) ∩ 𝐴 ) = { 𝑞 } ) |
13 |
|
alral |
⊢ ( ∀ 𝑝 ∀ 𝑞 ∈ 𝐴 ( ( 𝐹 ‘ 𝑞 ) ∩ 𝐴 ) = { 𝑞 } → ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ( ( 𝐹 ‘ 𝑞 ) ∩ 𝐴 ) = { 𝑞 } ) |
14 |
12 13
|
syl |
⊢ ( ∀ 𝑞 ∈ 𝐴 ( ( 𝐹 ‘ 𝑞 ) ∩ 𝐴 ) = { 𝑞 } → ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ( ( 𝐹 ‘ 𝑞 ) ∩ 𝐴 ) = { 𝑞 } ) |
15 |
11 14
|
anim12i |
⊢ ( ( ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ∧ ∀ 𝑞 ∈ 𝐴 ( ( 𝐹 ‘ 𝑞 ) ∩ 𝐴 ) = { 𝑞 } ) → ( ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ∧ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ( ( 𝐹 ‘ 𝑞 ) ∩ 𝐴 ) = { 𝑞 } ) ) |
16 |
6 15
|
mpdan |
⊢ ( ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ( ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ∧ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ( ( 𝐹 ‘ 𝑞 ) ∩ 𝐴 ) = { 𝑞 } ) ) |
17 |
|
r19.26-2 |
⊢ ( ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ( ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ∧ ( ( 𝐹 ‘ 𝑞 ) ∩ 𝐴 ) = { 𝑞 } ) ↔ ( ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ∧ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ( ( 𝐹 ‘ 𝑞 ) ∩ 𝐴 ) = { 𝑞 } ) ) |
18 |
16 17
|
sylibr |
⊢ ( ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ( ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ∧ ( ( 𝐹 ‘ 𝑞 ) ∩ 𝐴 ) = { 𝑞 } ) ) |
19 |
|
ineq1 |
⊢ ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) → ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = ( ( 𝐹 ‘ 𝑞 ) ∩ 𝐴 ) ) |
20 |
|
eqeq1 |
⊢ ( ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ( ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = ( ( 𝐹 ‘ 𝑞 ) ∩ 𝐴 ) ↔ { 𝑝 } = ( ( 𝐹 ‘ 𝑞 ) ∩ 𝐴 ) ) ) |
21 |
|
eqcom |
⊢ ( { 𝑝 } = ( ( 𝐹 ‘ 𝑞 ) ∩ 𝐴 ) ↔ ( ( 𝐹 ‘ 𝑞 ) ∩ 𝐴 ) = { 𝑝 } ) |
22 |
20 21
|
bitrdi |
⊢ ( ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ( ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = ( ( 𝐹 ‘ 𝑞 ) ∩ 𝐴 ) ↔ ( ( 𝐹 ‘ 𝑞 ) ∩ 𝐴 ) = { 𝑝 } ) ) |
23 |
|
eqeq1 |
⊢ ( ( ( 𝐹 ‘ 𝑞 ) ∩ 𝐴 ) = { 𝑞 } → ( ( ( 𝐹 ‘ 𝑞 ) ∩ 𝐴 ) = { 𝑝 } ↔ { 𝑞 } = { 𝑝 } ) ) |
24 |
|
eqcom |
⊢ ( { 𝑞 } = { 𝑝 } ↔ { 𝑝 } = { 𝑞 } ) |
25 |
|
vex |
⊢ 𝑝 ∈ V |
26 |
|
sneqbg |
⊢ ( 𝑝 ∈ V → ( { 𝑝 } = { 𝑞 } ↔ 𝑝 = 𝑞 ) ) |
27 |
25 26
|
ax-mp |
⊢ ( { 𝑝 } = { 𝑞 } ↔ 𝑝 = 𝑞 ) |
28 |
24 27
|
bitri |
⊢ ( { 𝑞 } = { 𝑝 } ↔ 𝑝 = 𝑞 ) |
29 |
23 28
|
bitrdi |
⊢ ( ( ( 𝐹 ‘ 𝑞 ) ∩ 𝐴 ) = { 𝑞 } → ( ( ( 𝐹 ‘ 𝑞 ) ∩ 𝐴 ) = { 𝑝 } ↔ 𝑝 = 𝑞 ) ) |
30 |
22 29
|
sylan9bb |
⊢ ( ( ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ∧ ( ( 𝐹 ‘ 𝑞 ) ∩ 𝐴 ) = { 𝑞 } ) → ( ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = ( ( 𝐹 ‘ 𝑞 ) ∩ 𝐴 ) ↔ 𝑝 = 𝑞 ) ) |
31 |
19 30
|
syl5ib |
⊢ ( ( ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ∧ ( ( 𝐹 ‘ 𝑞 ) ∩ 𝐴 ) = { 𝑞 } ) → ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) → 𝑝 = 𝑞 ) ) |
32 |
31
|
ralimi |
⊢ ( ∀ 𝑞 ∈ 𝐴 ( ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ∧ ( ( 𝐹 ‘ 𝑞 ) ∩ 𝐴 ) = { 𝑞 } ) → ∀ 𝑞 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) → 𝑝 = 𝑞 ) ) |
33 |
32
|
ralimi |
⊢ ( ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ( ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ∧ ( ( 𝐹 ‘ 𝑞 ) ∩ 𝐴 ) = { 𝑞 } ) → ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) → 𝑝 = 𝑞 ) ) |
34 |
18 33
|
syl |
⊢ ( ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) → 𝑝 = 𝑞 ) ) |
35 |
34
|
anim2i |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐽 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝐹 : 𝐴 ⟶ 𝐽 ∧ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) → 𝑝 = 𝑞 ) ) ) |
36 |
|
dff13 |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐽 ↔ ( 𝐹 : 𝐴 ⟶ 𝐽 ∧ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) → 𝑝 = 𝑞 ) ) ) |
37 |
35 36
|
sylibr |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐽 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → 𝐹 : 𝐴 –1-1→ 𝐽 ) |