Metamath Proof Explorer


Theorem fvineqsnf1

Description: A theorem about functions where the image of every point intersects the domain only at that point. If J is a topology and A is a set with no limit points, then there exists an F such that this antecedent is true. See nlpfvineqsn for a proof of this fact. (Contributed by ML, 23-Mar-2021)

Ref Expression
Assertion fvineqsnf1 ( ( 𝐹 : 𝐴𝐽 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → 𝐹 : 𝐴1-1𝐽 )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝑝 = 𝑞 → ( 𝐹𝑝 ) = ( 𝐹𝑞 ) )
2 1 ineq1d ( 𝑝 = 𝑞 → ( ( 𝐹𝑝 ) ∩ 𝐴 ) = ( ( 𝐹𝑞 ) ∩ 𝐴 ) )
3 sneq ( 𝑝 = 𝑞 → { 𝑝 } = { 𝑞 } )
4 2 3 eqeq12d ( 𝑝 = 𝑞 → ( ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ↔ ( ( 𝐹𝑞 ) ∩ 𝐴 ) = { 𝑞 } ) )
5 4 cbvralvw ( ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ↔ ∀ 𝑞𝐴 ( ( 𝐹𝑞 ) ∩ 𝐴 ) = { 𝑞 } )
6 5 biimpi ( ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ∀ 𝑞𝐴 ( ( 𝐹𝑞 ) ∩ 𝐴 ) = { 𝑞 } )
7 ax-5 ( ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ∀ 𝑞𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } )
8 alral ( ∀ 𝑞𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ∀ 𝑞𝐴𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } )
9 ralcom ( ∀ 𝑞𝐴𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ↔ ∀ 𝑝𝐴𝑞𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } )
10 9 biimpi ( ∀ 𝑞𝐴𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ∀ 𝑝𝐴𝑞𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } )
11 7 8 10 3syl ( ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ∀ 𝑝𝐴𝑞𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } )
12 ax-5 ( ∀ 𝑞𝐴 ( ( 𝐹𝑞 ) ∩ 𝐴 ) = { 𝑞 } → ∀ 𝑝𝑞𝐴 ( ( 𝐹𝑞 ) ∩ 𝐴 ) = { 𝑞 } )
13 alral ( ∀ 𝑝𝑞𝐴 ( ( 𝐹𝑞 ) ∩ 𝐴 ) = { 𝑞 } → ∀ 𝑝𝐴𝑞𝐴 ( ( 𝐹𝑞 ) ∩ 𝐴 ) = { 𝑞 } )
14 12 13 syl ( ∀ 𝑞𝐴 ( ( 𝐹𝑞 ) ∩ 𝐴 ) = { 𝑞 } → ∀ 𝑝𝐴𝑞𝐴 ( ( 𝐹𝑞 ) ∩ 𝐴 ) = { 𝑞 } )
15 11 14 anim12i ( ( ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ∧ ∀ 𝑞𝐴 ( ( 𝐹𝑞 ) ∩ 𝐴 ) = { 𝑞 } ) → ( ∀ 𝑝𝐴𝑞𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ∧ ∀ 𝑝𝐴𝑞𝐴 ( ( 𝐹𝑞 ) ∩ 𝐴 ) = { 𝑞 } ) )
16 6 15 mpdan ( ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ( ∀ 𝑝𝐴𝑞𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ∧ ∀ 𝑝𝐴𝑞𝐴 ( ( 𝐹𝑞 ) ∩ 𝐴 ) = { 𝑞 } ) )
17 r19.26-2 ( ∀ 𝑝𝐴𝑞𝐴 ( ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ∧ ( ( 𝐹𝑞 ) ∩ 𝐴 ) = { 𝑞 } ) ↔ ( ∀ 𝑝𝐴𝑞𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ∧ ∀ 𝑝𝐴𝑞𝐴 ( ( 𝐹𝑞 ) ∩ 𝐴 ) = { 𝑞 } ) )
18 16 17 sylibr ( ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ∀ 𝑝𝐴𝑞𝐴 ( ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ∧ ( ( 𝐹𝑞 ) ∩ 𝐴 ) = { 𝑞 } ) )
19 ineq1 ( ( 𝐹𝑝 ) = ( 𝐹𝑞 ) → ( ( 𝐹𝑝 ) ∩ 𝐴 ) = ( ( 𝐹𝑞 ) ∩ 𝐴 ) )
20 eqeq1 ( ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ( ( ( 𝐹𝑝 ) ∩ 𝐴 ) = ( ( 𝐹𝑞 ) ∩ 𝐴 ) ↔ { 𝑝 } = ( ( 𝐹𝑞 ) ∩ 𝐴 ) ) )
21 eqcom ( { 𝑝 } = ( ( 𝐹𝑞 ) ∩ 𝐴 ) ↔ ( ( 𝐹𝑞 ) ∩ 𝐴 ) = { 𝑝 } )
22 20 21 bitrdi ( ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ( ( ( 𝐹𝑝 ) ∩ 𝐴 ) = ( ( 𝐹𝑞 ) ∩ 𝐴 ) ↔ ( ( 𝐹𝑞 ) ∩ 𝐴 ) = { 𝑝 } ) )
23 eqeq1 ( ( ( 𝐹𝑞 ) ∩ 𝐴 ) = { 𝑞 } → ( ( ( 𝐹𝑞 ) ∩ 𝐴 ) = { 𝑝 } ↔ { 𝑞 } = { 𝑝 } ) )
24 eqcom ( { 𝑞 } = { 𝑝 } ↔ { 𝑝 } = { 𝑞 } )
25 vex 𝑝 ∈ V
26 sneqbg ( 𝑝 ∈ V → ( { 𝑝 } = { 𝑞 } ↔ 𝑝 = 𝑞 ) )
27 25 26 ax-mp ( { 𝑝 } = { 𝑞 } ↔ 𝑝 = 𝑞 )
28 24 27 bitri ( { 𝑞 } = { 𝑝 } ↔ 𝑝 = 𝑞 )
29 23 28 bitrdi ( ( ( 𝐹𝑞 ) ∩ 𝐴 ) = { 𝑞 } → ( ( ( 𝐹𝑞 ) ∩ 𝐴 ) = { 𝑝 } ↔ 𝑝 = 𝑞 ) )
30 22 29 sylan9bb ( ( ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ∧ ( ( 𝐹𝑞 ) ∩ 𝐴 ) = { 𝑞 } ) → ( ( ( 𝐹𝑝 ) ∩ 𝐴 ) = ( ( 𝐹𝑞 ) ∩ 𝐴 ) ↔ 𝑝 = 𝑞 ) )
31 19 30 syl5ib ( ( ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ∧ ( ( 𝐹𝑞 ) ∩ 𝐴 ) = { 𝑞 } ) → ( ( 𝐹𝑝 ) = ( 𝐹𝑞 ) → 𝑝 = 𝑞 ) )
32 31 ralimi ( ∀ 𝑞𝐴 ( ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ∧ ( ( 𝐹𝑞 ) ∩ 𝐴 ) = { 𝑞 } ) → ∀ 𝑞𝐴 ( ( 𝐹𝑝 ) = ( 𝐹𝑞 ) → 𝑝 = 𝑞 ) )
33 32 ralimi ( ∀ 𝑝𝐴𝑞𝐴 ( ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ∧ ( ( 𝐹𝑞 ) ∩ 𝐴 ) = { 𝑞 } ) → ∀ 𝑝𝐴𝑞𝐴 ( ( 𝐹𝑝 ) = ( 𝐹𝑞 ) → 𝑝 = 𝑞 ) )
34 18 33 syl ( ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ∀ 𝑝𝐴𝑞𝐴 ( ( 𝐹𝑝 ) = ( 𝐹𝑞 ) → 𝑝 = 𝑞 ) )
35 34 anim2i ( ( 𝐹 : 𝐴𝐽 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝐹 : 𝐴𝐽 ∧ ∀ 𝑝𝐴𝑞𝐴 ( ( 𝐹𝑝 ) = ( 𝐹𝑞 ) → 𝑝 = 𝑞 ) ) )
36 dff13 ( 𝐹 : 𝐴1-1𝐽 ↔ ( 𝐹 : 𝐴𝐽 ∧ ∀ 𝑝𝐴𝑞𝐴 ( ( 𝐹𝑝 ) = ( 𝐹𝑞 ) → 𝑝 = 𝑞 ) ) )
37 35 36 sylibr ( ( 𝐹 : 𝐴𝐽 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → 𝐹 : 𝐴1-1𝐽 )