Description: A theorem about functions where the image of every point intersects the domain only at that point. If J is a topology and A is a set with no limit points, then there exists an F such that this antecedent is true. See nlpfvineqsn for a proof of this fact. (Contributed by ML, 23-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | fvineqsnf1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 | |
|
2 | 1 | ineq1d | |
3 | sneq | |
|
4 | 2 3 | eqeq12d | |
5 | 4 | cbvralvw | |
6 | 5 | biimpi | |
7 | ax-5 | |
|
8 | alral | |
|
9 | ralcom | |
|
10 | 9 | biimpi | |
11 | 7 8 10 | 3syl | |
12 | ax-5 | |
|
13 | alral | |
|
14 | 12 13 | syl | |
15 | 11 14 | anim12i | |
16 | 6 15 | mpdan | |
17 | r19.26-2 | |
|
18 | 16 17 | sylibr | |
19 | ineq1 | |
|
20 | eqeq1 | |
|
21 | eqcom | |
|
22 | 20 21 | bitrdi | |
23 | eqeq1 | |
|
24 | eqcom | |
|
25 | vex | |
|
26 | sneqbg | |
|
27 | 25 26 | ax-mp | |
28 | 24 27 | bitri | |
29 | 23 28 | bitrdi | |
30 | 22 29 | sylan9bb | |
31 | 19 30 | imbitrid | |
32 | 31 | ralimi | |
33 | 32 | ralimi | |
34 | 18 33 | syl | |
35 | 34 | anim2i | |
36 | dff13 | |
|
37 | 35 36 | sylibr | |