Metamath Proof Explorer


Theorem fvineqsnf1

Description: A theorem about functions where the image of every point intersects the domain only at that point. If J is a topology and A is a set with no limit points, then there exists an F such that this antecedent is true. See nlpfvineqsn for a proof of this fact. (Contributed by ML, 23-Mar-2021)

Ref Expression
Assertion fvineqsnf1 F:AJpAFpA=pF:A1-1J

Proof

Step Hyp Ref Expression
1 fveq2 p=qFp=Fq
2 1 ineq1d p=qFpA=FqA
3 sneq p=qp=q
4 2 3 eqeq12d p=qFpA=pFqA=q
5 4 cbvralvw pAFpA=pqAFqA=q
6 5 biimpi pAFpA=pqAFqA=q
7 ax-5 pAFpA=pqpAFpA=p
8 alral qpAFpA=pqApAFpA=p
9 ralcom qApAFpA=ppAqAFpA=p
10 9 biimpi qApAFpA=ppAqAFpA=p
11 7 8 10 3syl pAFpA=ppAqAFpA=p
12 ax-5 qAFqA=qpqAFqA=q
13 alral pqAFqA=qpAqAFqA=q
14 12 13 syl qAFqA=qpAqAFqA=q
15 11 14 anim12i pAFpA=pqAFqA=qpAqAFpA=ppAqAFqA=q
16 6 15 mpdan pAFpA=ppAqAFpA=ppAqAFqA=q
17 r19.26-2 pAqAFpA=pFqA=qpAqAFpA=ppAqAFqA=q
18 16 17 sylibr pAFpA=ppAqAFpA=pFqA=q
19 ineq1 Fp=FqFpA=FqA
20 eqeq1 FpA=pFpA=FqAp=FqA
21 eqcom p=FqAFqA=p
22 20 21 bitrdi FpA=pFpA=FqAFqA=p
23 eqeq1 FqA=qFqA=pq=p
24 eqcom q=pp=q
25 vex pV
26 sneqbg pVp=qp=q
27 25 26 ax-mp p=qp=q
28 24 27 bitri q=pp=q
29 23 28 bitrdi FqA=qFqA=pp=q
30 22 29 sylan9bb FpA=pFqA=qFpA=FqAp=q
31 19 30 imbitrid FpA=pFqA=qFp=Fqp=q
32 31 ralimi qAFpA=pFqA=qqAFp=Fqp=q
33 32 ralimi pAqAFpA=pFqA=qpAqAFp=Fqp=q
34 18 33 syl pAFpA=ppAqAFp=Fqp=q
35 34 anim2i F:AJpAFpA=pF:AJpAqAFp=Fqp=q
36 dff13 F:A1-1JF:AJpAqAFp=Fqp=q
37 35 36 sylibr F:AJpAFpA=pF:A1-1J