Metamath Proof Explorer


Theorem fvineqsneu

Description: A theorem about functions where the image of every point intersects the domain only at that point. (Contributed by ML, 27-Mar-2021)

Ref Expression
Assertion fvineqsneu F Fn A p A F p A = p q A ∃! x ran F q x

Proof

Step Hyp Ref Expression
1 fnfvelrn F Fn A o A F o ran F
2 1 ex F Fn A o A F o ran F
3 2 adantr F Fn A p A F p A = p o A F o ran F
4 fnrnfv F Fn A ran F = y | p A y = F p
5 4 eqabrd F Fn A y ran F p A y = F p
6 5 adantr F Fn A p A F p A = p y ran F p A y = F p
7 nfv p F Fn A
8 nfra1 p p A F p A = p
9 7 8 nfan p F Fn A p A F p A = p
10 nfv p o A o y y = F o
11 eleq2w2 y = F p o y o F p
12 elin o F p A o F p o A
13 12 rbaib o A o F p A o F p
14 13 ad2antll F Fn A p A F p A = p p A o A o F p A o F p
15 rsp p A F p A = p p A F p A = p
16 eleq2w2 F p A = p o F p A o p
17 velsn o p o = p
18 equcom o = p p = o
19 17 18 bitri o p p = o
20 16 19 bitrdi F p A = p o F p A p = o
21 15 20 syl6 p A F p A = p p A o F p A p = o
22 21 adantl F Fn A p A F p A = p p A o F p A p = o
23 22 adantrd F Fn A p A F p A = p p A o A o F p A p = o
24 23 imp F Fn A p A F p A = p p A o A o F p A p = o
25 14 24 bitr3d F Fn A p A F p A = p p A o A o F p p = o
26 11 25 sylan9bbr F Fn A p A F p A = p p A o A y = F p o y p = o
27 26 ex F Fn A p A F p A = p p A o A y = F p o y p = o
28 27 anass1rs F Fn A p A F p A = p o A p A y = F p o y p = o
29 28 impr F Fn A p A F p A = p o A p A y = F p o y p = o
30 29 an32s F Fn A p A F p A = p p A y = F p o A o y p = o
31 eqeq1 y = F p y = F o F p = F o
32 dffn3 F Fn A F : A ran F
33 fvineqsnf1 F : A ran F p A F p A = p F : A 1-1 ran F
34 32 33 sylanb F Fn A p A F p A = p F : A 1-1 ran F
35 dff13 F : A 1-1 ran F F : A ran F p A o A F p = F o p = o
36 34 35 sylib F Fn A p A F p A = p F : A ran F p A o A F p = F o p = o
37 rsp p A o A F p = F o p = o p A o A F p = F o p = o
38 36 37 simpl2im F Fn A p A F p A = p p A o A F p = F o p = o
39 rsp o A F p = F o p = o o A F p = F o p = o
40 38 39 syl6 F Fn A p A F p A = p p A o A F p = F o p = o
41 40 imp32 F Fn A p A F p A = p p A o A F p = F o p = o
42 fveq2 p = o F p = F o
43 41 42 impbid1 F Fn A p A F p A = p p A o A F p = F o p = o
44 31 43 sylan9bbr F Fn A p A F p A = p p A o A y = F p y = F o p = o
45 44 ex F Fn A p A F p A = p p A o A y = F p y = F o p = o
46 45 anass1rs F Fn A p A F p A = p o A p A y = F p y = F o p = o
47 46 impr F Fn A p A F p A = p o A p A y = F p y = F o p = o
48 47 an32s F Fn A p A F p A = p p A y = F p o A y = F o p = o
49 30 48 bitr4d F Fn A p A F p A = p p A y = F p o A o y y = F o
50 49 ex F Fn A p A F p A = p p A y = F p o A o y y = F o
51 50 ralrimiv F Fn A p A F p A = p p A y = F p o A o y y = F o
52 51 exp32 F Fn A p A F p A = p p A y = F p o A o y y = F o
53 9 10 52 rexlimd F Fn A p A F p A = p p A y = F p o A o y y = F o
54 6 53 sylbid F Fn A p A F p A = p y ran F o A o y y = F o
55 rsp o A o y y = F o o A o y y = F o
56 54 55 syl6 F Fn A p A F p A = p y ran F o A o y y = F o
57 56 com23 F Fn A p A F p A = p o A y ran F o y y = F o
58 57 ralrimdv F Fn A p A F p A = p o A y ran F o y y = F o
59 reu6i F o ran F y ran F o y y = F o ∃! y ran F o y
60 59 ex F o ran F y ran F o y y = F o ∃! y ran F o y
61 3 58 60 syl6c F Fn A p A F p A = p o A ∃! y ran F o y
62 61 ralrimiv F Fn A p A F p A = p o A ∃! y ran F o y
63 nfv x q = o
64 nfv y q = o
65 nfvd q = o y q x
66 nfvd q = o x o y
67 elequ12 q = o x = y q x o y
68 67 ex q = o x = y q x o y
69 63 64 65 66 68 cbvreud q = o ∃! x ran F q x ∃! y ran F o y
70 69 cbvralvw q A ∃! x ran F q x o A ∃! y ran F o y
71 62 70 sylibr F Fn A p A F p A = p q A ∃! x ran F q x